ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:22.41KB ,
资源ID:119387      下载积分:5 金币
已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(用MATLAB实现最速下降法.docx)为本站会员(奥沙丽水)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(发送邮件至doc331@126.com或直接QQ联系客服),我们立即给予删除!

用MATLAB实现最速下降法.docx

1、实验的题目和要求一、所属课程名称:最优化方法二、实验日期:2010年5月10日2010年5月15日三、实验目的掌握最速下降法,牛顿法和共钝梯度法的算法思想,并能上机 编程实现相应的算法。二、实验要求用MATLAB实现最速下降法,牛顿法和共钝梯度法求解实例。四、实验原理最速下降法是以负梯度方向最为下降方向的极小化算法,相邻 两次的搜索方向是互相直交的。牛顿法是利用目标函数f (x)在迭代点 xk处的Taylor展开式作为模型函数,并利用这个二次模型函数的极 小点序列去逼近目标函数的极小点。共钝梯度法它的每一个搜索方向 是互相共钝的,而这些搜索方向dk仅仅是负梯度方向.gk与上一次接 待的搜索方向

2、dy的组合。五.运行及结果如下:最速下降法:题目:f=(x-2)A2+(y-4)A2M文件:function R,n=steel(x0,y0,eps)syms x;syms y;f=(x-2)A2+(y-4)A2;v=x,y;j=jacobian(f,v);T=subsO(1),x,x0),subs(j(2),y,y0);temp=sqrt(T(1)A2+(T(2)A2);x1=x0;y1=y0;n=0;syms kk;while (tempeps)d=-T;f1=x1+kk*d(1);f2=y1+kk*d(2);fT=subs(j(1),x,f1),subs(j(2),y,f2);fun=s

3、qrt(fT(1)A2+(fT(2)A2);Mini=Gold(fun,0,1,0.00001);x0=x1+Mini*d(1);y0=y1+Mini*d(2);T=subs(j(1),x,x0),subs(j(2),y,y0);temp=sqrt(T(1)A2+(T(2)A2);x1=x0;y1=y0;n=n+1;endR=x0,y0调用黄金分割法:M文件:function Mini=Gold(f,a0,b0,eps)syms x;format long;syms kk;u=a0+0.382*(b0-a0);v=a0+0.618*(b0-a0);k=0;a=a0;b=b0;array(k+1

4、1)=a;array(k+1,2)=b;while(b-a)/(b0-a0)=eps)Fu=subs(f,kk,u);Fv=subs(f,kk,v);if(FuFv)a=u;u=v;v=a+0.618*(b-a);k=k+1;endarray(k+1,1)=a;array(k+1,2)=b;endMini=(a+b)/2;输入:R,n=steel(0,1,0.0001)R =1.999994136676423.99999120501463R =1.999994136676423.99999120501463n =1牛顿法:题目:f=(x-2)A2+(y-4)A2M文件:syms x1 x2;

5、f=(x1-2)A2+(x2-4)A2 ;v=x1,x2;df=jacobian(f,v);df=df.;G=jacobian(df,v);epson=1e-12;x0=0,0;g1=subs(df,x1,x2,x0(1,1),x0(2,1);G1=subs(G,x1,x2,x0(1,1),x0(2,1);k=0;mul_count=0;sum_count=0;mul_count=mul_count+12;sum_count=sum_count+6;while(norm(g1)epson)p=-G1g1;x0=x0+p;g1=subs(df,x1,x2,x0(1,1),x0(2,1);G1=s

6、ubs(G,x1,x2,x0(1,1),x0(2,1);k=k+1;mul_count=mul_count+16;sum_count=sum_count+11;end;kx0mul_countsum_count结果:k =1x0 =24mul_count =28sum_count =17共钝梯度法:精品资料题目:f=(x-2F2+(y-4F2M文件:function f=conjugate_grad_2d(x0,t)x=x0;syms xi yi af=(xi-2)A2+(yi-4)A2;fx=diff(f,xi);fy=diff(f,yi);fx=subs(fx,xi,yi,x0);fy=s

7、ubs(fy,xi,yi,x0);fi=fx,fy;count=0;while double(sqrt(fxA2+fyA2)ts=-fi;if count=0s=-fi;elses=s1;endx=x+a*s;f=subs(f,xi,yi,x);精品资料f1=diff(f);f1=solve(f1);if f1=0ai=double(f1);elsebreakx,f=subs(f,xi,yi,x),countendx=subs(x,a,ai);f=xi-xiA2+2*xi*yi+yiA2;fxi=diff(f,xi);fyi=diff(f,yi);fxi=subs(fxi,xi,yi,x);f

8、yi=subs(fyi,xi,yi,x);fii=fxi,fyi;d=(fxiA2+fyiA2)/(fxA2+fyA2);s1=-fii+d*s;count=count+1;fx=fxi;fy=fyi;endx,f=subs(f,xi,yi,x),count精品资料结果:x =0.24998825499785-0.24999998741273f =0.12499999986176count =10ans =0.12499999986176六、结论如下:最速下降法越接近极小值,步长越小,前进越慢。牛顿法要求二阶导 数,计算量很大。共钝梯度法是介于最速下降和牛顿法之间的算法, 克服了最速下降法的收敛速度慢的缺点,又避免了牛顿法的大计算 量。Welcome ToDownload !欢迎您的下载,资料仅供参考!

宁ICP备18001539号-1