ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:215.50KB ,
资源ID:131077      下载积分:5 金币
已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(蚁群算法人工智能实验报告.doc)为本站会员(田海滨)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(发送邮件至doc331@126.com或直接QQ联系客服),我们立即给予删除!

蚁群算法人工智能实验报告.doc

1、人工智能实验报告姓名:学号: 班级:实验时间: 蚁群算法实验原理: 蚂蚁在觅食过程中可以找出巢穴到食物源的最短路径,为什么?(1)信息素(pheromone)(2)正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。 (3)挥发现象:路径上的信息素浓度会随着时间推进而逐渐衰减。蚁群算法的缺点:1)收敛速度慢2)易于陷入局部最优改进:1)采用局部优化,设计了三种优化算子。2)采用蚁群优化算法。3)其它优化算法实验内容:旅行商问题(TSP,traveling salesman problem):一商人去n个城市销货,所有城市走一遍再回到起点,使所走路程最短。实验步骤:算法代码:%

2、蚁群算法的优化计算旅行商问题(TSP)优化% 清空环境变量clear allclc% 导入数据load citys_data.mat% 计算城市间相互距离n = size(citys,1);D = zeros(n,n);for i = 1:n for j = 1:n if i = j D(i,j) = sqrt(sum(citys(i,:) - citys(j,:).2); else D(i,j) = 1e-4; end end end% 初始化参数m = 50; % 蚂蚁数量alpha = 1; % 信息素重要程度因子beta = 5; % 启发函数重要程度因子rho = 0.1; % 信息

3、素挥发因子Q = 1; % 常系数Eta = 1./D; % 启发函数Tau = ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 200; % 最大迭代次数 Route_best = zeros(iter_max,n); % 各代最佳路径 Length_best = zeros(iter_max,1); % 各代最佳路径的长度 Length_ave = zeros(iter_max,1); % 各代路径的平均长度 % 迭代寻找最佳路径while iter = rand); %选择下一个访问城市,

4、往往转移概率大的城市被选中的概率也更大。 target = allow(target_index(1); Table(i,j) = target; %已选定的下一个待访问城市 end end % 计算各个蚂蚁的路径距离 Length = zeros(m,1); for i = 1:m Route = Table(i,:); for j = 1:(n - 1) Length(i) = Length(i) + D(Route(j),Route(j + 1); end Length(i) = Length(i) + D(Route(n),Route(1); %构成环 end % 计算最短路径距离及平

5、均距离 if iter = 1 min_Length,min_index = min(Length); Length_best(iter) = min_Length; Length_ave(iter) = mean(Length); Route_best(iter,:) = Table(min_index,:); %Table,访问城市列表,也就是路径记录表 else min_Length,min_index = min(Length); Length_best(iter) = min(Length_best(iter - 1),min_Length); Length_ave(iter) =

6、mean(Length); if Length_best(iter) = min_Length Route_best(iter,:) = Table(min_index,:); else Route_best(iter,:) = Route_best(iter-1),:); end end % 更新信息素 Delta_Tau = zeros(n,n); % 逐个蚂蚁计算 for i = 1:m % 逐个城市计算 for j = 1:(n - 1) Delta_Tau(Table(i,j),Table(i,j+1) = Delta_Tau(Table(i,j),Table(i,j+1) + Q/

7、Length(i); end Delta_Tau(Table(i,n),Table(i,1) = Delta_Tau(Table(i,n),Table(i,1) + Q/Length(i); end Tau = (1-rho) * Tau + Delta_Tau; %所有蚂蚁在各连接路径上的信息素浓度,不同迭代层间有关联 % 迭代次数加1,清空路径记录表 iter = iter + 1; Table = zeros(m,n);end% 结果显示Shortest_Length,index = min(Length_best);Shortest_Route = Route_best(index,:

8、);disp(最短距离: num2str(Shortest_Length);disp(最短路径: num2str(Shortest_Route Shortest_Route(1);% 绘图figure(1)plot(citys(Shortest_Route,1);citys(Shortest_Route(1),1),. citys(Shortest_Route,2);citys(Shortest_Route(1),2),o-);grid onfor i = 1:size(citys,1) text(citys(i,1),citys(i,2), num2str(i);endtext(citys(

9、Shortest_Route(1),1),citys(Shortest_Route(1),2), 起点);text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2), 终点);xlabel(城市位置横坐标)ylabel(城市位置纵坐标)title(蚁群算法优化路径(最短距离: num2str(Shortest_Length) )figure(2)plot(1:iter_max,Length_best,b,1:iter_max,Length_ave,r:)legend(最短距离,平均距离)xlabel(迭代次数)ylabel(距离)title(各代最短距离与平均距离对比)实验结果:

宁ICP备18001539号-1