ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:16.09KB ,
资源ID:480237      下载积分:5 金币
已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(支持向量机原理.docx)为本站会员(飞猪)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(发送邮件至doc331@126.com或直接QQ联系客服),我们立即给予删除!

支持向量机原理.docx

1、支持向量机(SupportVectorMachine,SVM)是一类按监督学习(supervisedlearning)方式对数据进行三匹笈些的广义线性分类器(generalizedlinearclassifier),其次里边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)oSVM是机器学习领域的一一个非常关键的方法其核心思想是从输入空间向一个更高维度的特征空间(FeatUreSPaCe)做映射,通常认为需要解决的问题在特征空间会被简化,变得线性可分SVM本质是一个线性分类器,定义超平面公式为:y=u,t.rIb给样本打上标签(正样本为+1,负样本为1).那

2、么,对于每个样本X,满足式yi(wx+b)O由点到平面的距离为|wr.r+b|隈Il推导可得样本到超平面的几何间隔为m(z+)Il约Il考虑y;可取+1,1;记样本点X到超平面的距离为如式所示:几何间隔最大时的超平面即为所求,此时转化为一个凸二次规划问题,如式pip;MIs.t.y(叫工+)l0,t=1,2,N求出最优解w*,b*,则可得出分离超平面为w*.x+b*=0.首先添加拉格朗日乘子a?0,得到拉格朗日函数,如式1.(w,b,a)-up+(1-M(优+助其次,根据强对偶关系和KKT条件可产生原问题的对偶问题,目标函数转化为ClmiaOxmw,ibnL(w,b,),即L(w,b,)先对w,b求最小,再对。求最大.求出w*,b*,得到分类决策函数为f(x)=sign(w*x+b)以上是用SVM对两类样本进行线性分类,通过引入核方法可将SVM用于非线性分类,即把输入空间向高维度的特征空间做映射时,使用非线性函数要解决多分类问题。

宁ICP备18001539号-1