ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:90.55KB ,
资源ID:490626      下载积分:5 金币
已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(概率论与数理统计主要内容小结.docx)为本站会员(夺命阿水)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(发送邮件至doc331@126.com或直接QQ联系客服),我们立即给予删除!

概率论与数理统计主要内容小结.docx

1、概率论与数理统计主要内容小结概率局部1、全概率公式与贝叶斯公式全概率公式:其中。,当,纥是空间S的一个划分。贝叶斯公式:P由I公=广幻P(A田)力P(Bj)P(AIBj)其中男,星,8”是空间S的一个划分。2、互不相容与互不相关AB互不相容OAn8=。,P(Af8)二。事件AB互相独立=P(AB)=P(八)(B);两者没有必然联系3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。X伙1,P),即二点分布,那么分布律为Px=k=pk0-p)i,k=0,1.X久,p),即二项分布,那么分布律为Px=k=CP1-p)n-k=0,1,.,n.X

2、ie,xw(a,b)X万(,即泊松分布,那么分布律为Px=k=-=0,1,XU(,b),即均匀分布,那么概率密度为f()=b-a0,其它x(。),即指数分布,那么概率密度为F(X)=Je.0,其它1*2XN(4,),即正态分布,那么那么概率密度为/()=-e2,一OOVXO(或g(x)O),那么Y概率密度为:其中,z(y)是g(x)的反函数,且有=ming(-OO),g(+oo),7=maxg(-oo),g(+8).(ii)利用分布函数计算:先求y=g)值域,再在该值域求Y的分布函数那么有4(y)=F(y)常用求导公式5、二维随机变量分布律对于二维连续性随机变量(X,y),其联合概率密度为7(

3、x,y),其联合分布函数为/(x,y),那么F(x,y)=,:/(,V)dvdu,概率密度性质:(i)/(x,y)O,(ii)f(u.v)dvduJ-DOJ-X概率密度f(x,y),求区域概率有P(x,)D=f(x,y)dydx,D边缘分布函数为Fx(x)=JJ:/(,v)dvdu,FX(y)=v)dudv,边缘概率密度为Fx(X)=f(x9y)dy,f(y)=f(x,y)d.J-8J-OC条件分布函数为FXIy(XIy)=L当弋八,KuUI幻=L弊卜匕条件概率密度为rUy)=坐斗,4X(yI幻=需-f(y)fM对于离散情形,设联合分布律为PX=i,Y=yj=Pij边缘概率密度为PX=Xi=Y

4、pij=P-PY=y.=pij=Pjj=Z=I条件概率密度为尸丫=XIX=X=,PX=iY=yj=-L.6、二维随机变量函数的分布设二维随机变量(X,Y)概率密度为f(x,y),分布函数为F(x,y)(i) Z=X+Y,那么Z的概率密度为当X,y相互独立时,fz(Z)=X(Z-y)fr(y)dy=jfx(x)fy(z-x)dx(ii) M=maxX,Y与N=min(X,Y当X,Y相互独立时,Fm(z)=Fx(z)Fy(z)fFN(Z)=I-(I-FX(Z)X1-4(Z)7、数学期望(i)求法:连续随机变量X概率密度为/a),那么E(X)=%。)公;假设y=g(X),那么E(Y)=fg(x)f(

5、x)dx.离散随机变量分布律为Px=pjt,那么E(X)=SZp;假设Y=g(X),那么k=E(X)=g(xk)pk.Jl=I假设有二维的随机变量(X,y),其联合概率密度为/(x,y),假设Y=g(X,Y),那么E(Y)=J:匚g(x,y)f(x,y)dydx.(ii)性质:E(C)=C,E(CX)=CE(X),E(X+Y)=E(X)+E(Y)x,y相互独立,那么有E(Xy)=E(X)(丫).8、方差定义:D(X)=ElX-E(X)2,标准差(均方差):JaX).计算:D(X)=E(X2)-I(X)J2性质:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X).常见分布的数学期望和

6、方差:两点分布:E(X)=P1D(X)=P(I-P).X仇,p),即二项分布,那么E(X)=np,D(X)=np(-p).X粗,即泊松分布,那么E(X)=ZD(X)=ZXU(4,6),即均匀分布,那么E(X)=巴心,D(X)=S.212XE(8),即指数分布,那么E(X)=3D(X)=XN(M,,),即正态分布,那么E(X)=,O(X)=/9、协方差与相关系数定义:协方差:Cov%x,y)=F(x)F(y)=f(x)f(y)=E(X,Y)=E(X)E(Y)F为分布函数,而f为概率密度一般情况下,X,y相互独立=x,y不相关,但反之不成立;特殊情况,当(x,y)N(外,2;。:,犬;夕)时,X,

7、丫相互独立ox,丫不相关并且此时E(X)=,夙丫)=2;。(X)=b(Y)=1px=.Cov(XI)=px2.11、切比雪夫(ChebySheV)不等式:设随机变量X的期望与方差为E(X)=,O(X)=b?,那么对任意正数0,有PX-E(X)e即尸X-4g.进一步有:PX-E(X)1-,BPPX-OM=1,2,,那么当n充分大时,Yn =NXk-E(NXk)/=14n近似N(OJ).定理2(棣莫弗-拉普拉斯定理)设随机变量%,=1,2服从参数为2,p(0p,X+%5-l)nX+-1),X-ta(n-1)Jnyn(-1炉 5-1炉Z (l)%(l)122当未知,的置信区间,枢轴量力2=%二臂42

8、一)双侧置信区间:(S-DS-S-I)S-),双那么置信上、下限:/ad)Z(T)1单侧置信区间:(0,(12),(ST)S2+8)41“(1)Na(一D假设检验的根本原理:小概率事件在一次观测实验中几乎不可能发生单侧置信上、下限:-W (-WNI“( T)ZaST)两个总体情形:C2 / C2当问,2未知,的置信区间,枢轴量/=U-F(Z21-l,Zl2-D (7 / 2双侧置信区间:双那么置信上、产 1S121Si F0(% T)S F (n1-l,n2-l, I 22下限.建!膛!,S; F 以g1,2D S; Fa(nl-Kn2-1) 1 22单侧置信区间:S; 1S: 1(商/Y(

9、l,2 T)(记 -1,2 -1)+8单侧置信上、下限:5121 S; 1S;月_。(1 1,% -D S; Fa(n l,n2 -1)在求解置信区间时,先分清总体属于那种情况,然后写出置信区间,再代数值。7.假设检验显著性水平a:小概率事件发生的概率,也是拒绝域对应事件概率,显著性水平越大,拒绝域越大。两类错误:对原假设H0,备择假设H1,第一类错误Hx不真,接受Hl,第二类错误Hq不真,接受Ho,为减少两类错误,需增加样本容量。假设检验的根本步骤:(i)提出假设;(ii)选取检验统计量;(iii)确定拒绝域;(iv)计算观测值(V)并作出拒绝与接收原假设判断P值检验:计算P值,与显著性水平

10、a比拟,p值小于a拒绝原假设,否那么就接收原假设;P值计算方法是将观测值作为拒绝域临界点,代入拒绝域事件计算其概率。假设检验的情形:见书中164表,请复印下来,以便记忆,重点是1、2、3、7种情形,其余的也最好熟记。特别要注意,对假设检验问题,首先只看总体,是单个总体,还是两个总体,是对均值检验还是方差(精度)检验,假设是均值检验,要看总体方差是还是未知,总之要分清情形;另外假设是单侧检验,要写对原假设与备择假设,一般问有没显著改变,就是双侧检验,有没有显著提高就是右单侧检验,有没有显著降低就是左单侧检验;同时,把不含等于的情形作为备择假设,含有等于的作为原假设,如不超过多少,就是小于等于,这种含有等于,作为原假设。在双侧检验中,要写全拒绝域,然后看观测值是否满足不等式,以作推断。考试重点:全概率公式,独立性与不相关性等,一维,二维随机变量函数的概率密度求法,随机变量函数的概率密度求法,边缘概率,条件概率,期望,方差,协方差,点估计及其评价标准,假设检验。

宁ICP备18001539号-1