ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:63.22KB ,
资源ID:490861      下载积分:5 金币
已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(泛函历年试题集锦.docx)为本站会员(奥沙丽水)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(发送邮件至doc331@126.com或直接QQ联系客服),我们立即给予删除!

泛函历年试题集锦.docx

1、泛函分析2003试题1、表达赋范空间完备性的定义;证明:在BanaCh空间中,绝对收敛级数必收敛。解:(P5定义)假设赋范空间X中的序列x,J满足如下Cauchy条件:那么称E为Cauchy列,假设X中所有Cauchy列均收敛,那么称X为完备赋范空间或Banach空间。证明:BanaCh空间是完备的赋范空间,令X为BanaCh空间,*uX,J收敛,即2%绝对收敛。那么,令因为Ellzll收敛,故余项fjlM0,即A=rt+1这说明S,J是X中的CaUChy列,因X完备,故S,J收敛,即Zz收敛。2、设(X)=MI-x),分别求作为空间乃0,1,QO与CjlO的元素的范数。(即求u乃qo,i和N

2、C1IOJj时的范数IiU)解:uLL0,1时,11Il=J(J”(X)Kr=(X(I-项Zx=1/6UC0,l时,HuH=maxu0=maxsupIX(I-X)I=I/40xluCj0,l时,HuH=max(u0,u,0)=max(supX(I-X)LSUPl-2x)=1O1O13、设X、Y是赋范空间,丁L(X,Y)J(X)=|7Il*X)。说明f(x)连续,并求supf(x)(r0)oIWIr解:/3)为数值函数,要证/(幻连续,7xJ-7-,其中乙x0而由公式M-帆卜-W(P3公式),即一网g-倒愀帆T0(T有界,连续,“oo)故/。)连续。11/21/24、给定无穷矩阵A=,求IIAI

3、ll,HAlL并估计IIAII2。1/31/3kF解:由命题(P76命题2.22),5、设心,说明/!?(),1:并求|/|。解:变量代换,令X=J亍,那么:1-19令U(X)=-X4,那么显然WX)z?()/,2故由(P89定理),L20,ir,且:6、设X为BanaCh空间,x(f):,勿X连续,夕:。,4向是Cl函数,(a)=c,(3)=b,证明:证明:等式两边都是有意义的向量,由(PlOl推论),令fw,那么命题得证。泛函分析2006试题1、(1)设lpoo,写出在空间0中,序列“范数收敛于的定义。,Jr,0xl,(2)设%(r)=0E=1,2,3,一.对的哪些值,序列“在空间Zao,

4、1中范数收敛于零?解:0,l中序列”范数收敛于U的定义为:ll-p05oo),具体而言,即:lim(1w(x)-urt(x)dx)p=0,JO假设/(x) = -lp2所以,与在0,l中范数收敛于零的的范围是1p22、设A是HiIbert空间H的闭子空间,UwH.(1)什么是在A中的最正确逼近?其直观意义如何?(2)设=由0,%,A是0,1上形如cosx+Z?SinX的函数之全体,m(x)三X(Oxr),求在A中的最正确逼近叫解:(1) 在A的最正确逼近是指,3vA,使得w-u=d(,A),直观意义即是,最正确逼近就是A在上的正投影。(2)设A上基为:cosx,sinx,那么由:八2八一00设

5、a=2,所以7二八20-0-L2J-,而所以,(参考P47例)3、(1)写出TtL(X,丫)的范数Ilrll的表达式并解释其直观意义。(2)设、=八7*),=(4%,%,)(x=(%)eX),求序列(q)应满足的条件及lTl解:(1)范数IlTll的表达式为:IITII=supIl7xx,IITIl=SUPilTkII=SUPilTkIl=inf伏O:|笈|区ZxxX)XHOIlXlI=II.X1I1其直观意义是:任利的最大值,即是变换T的“最大伸张系数二(P69)IlXil(2)因为X=心T=L(X),Tk=a2%,)(x=(xr)X).对任意x=(%),y二(y)X,估计7-7,令二(q

6、),那么:fcaL+oo,任取。=(卬)尸,于是IlrlI,令-=IIaIl00,任取。a,而IMIl=1,于是T,由的任意性得:4、(1)解释什么是对偶空间的表示定理并解释其价值。1_1(2)设X=(X),说明fX,并求解:(1)对偶空间的表示定理是指,将对偶空间X通过表达式e*,y)UX,yy)使得VfwX*J(X)=9(%,y)CrwX),其中yeY由f唯一决定,且IIHlyI|,于是X等距同构于丫的一-系列定理,它将抽象的X*对偶空间与一个具体的空间Y等价。(2)因为/(W)=J2()山;,变量代换令y=33因为,v(x)三2L0,1,所以,X*=L7IOJJ132所以,III=(JO

7、IU(X)M)3=2(参考P90例)5、设X是一复BanaCh空间,TL(X).(1)如何判定算子哥级数7”的敛散性?11=0设(7)含于椭圆3/+29,;T的收敛半径R,如果弓(T)R,/1=0那么W;T发散。(2)级数里!的收敛半径为:R=IimJ例工=而b(T)含于椭圆3/+2丁1之内,所以=02fc2zn5G(T)g:/为X上的泛函23f的线性性由积分线性性易得,而|Il=supVIl3=()3,moHuHG3故fX,由定理知11/1I=IWlI3=(当):235、b(T)在i,T,l,T四个顶点所围的矩形内,判断级数”的敛散性。n=lQOX(Z537”的收敛半径为1,而r(T)Z53尸绝对收敛。)JI=I71=1解:解方程yX,x=7x+y,+8CO假设有(D(-7)T=Zry,(I-T)X=yx=I-Tly=T2yn=0w=0一般可定义映射:FxtTx+y,于是求原方程的解相当于求产的不动点,即Er=%,xi= Fxq =Tx0+ xq=T(Txfi+x0)+x0=T2xg+Txfi+Xq%=&7=rr-,x0+70+0=r=r,k0=0%工为所求的解,X也即为产的不动点。

宁ICP备18001539号-1