文献检索作业格式.doc

上传人:啊飒飒 文档编号:11465497 上传时间:2021-08-06 格式:DOC 页数:8 大小:44KB
返回 下载 相关 举报
文献检索作业格式.doc_第1页
第1页 / 共8页
文献检索作业格式.doc_第2页
第2页 / 共8页
文献检索作业格式.doc_第3页
第3页 / 共8页
文献检索作业格式.doc_第4页
第4页 / 共8页
文献检索作业格式.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《文献检索作业格式.doc》由会员分享,可在线阅读,更多相关《文献检索作业格式.doc(8页珍藏版)》请在三一文库上搜索。

1、文献检索结课作业标题*姓名:学号:专业:计算机在人工智能中的应用(三号、宋体)(The calculator is applicated in the artificial intelligence)一、课题分析:(宋体、小四号)人工智能是用计算机来探索和模拟人类的某些智力活动,使计算机具有智能化的功能,具有听、看、说和思想的能力,能模拟人脑进行推理、规划、设计、思考、学习等活动,达到模拟人类某些智能化行为的目的。人工智能的形成和发展是控制论、信息论、系统论、计算机科学、神经生理学心理学、数学和哲学等多种学科以及先进的技术手段相互渗透的结果,也是由于电、子计算机的出现和广泛应用的结果。人工智能

2、的应用包括自然语言理解、专家系统和机器人等许多领域,其应用和发展的前景非常广阔。本课题主要了解人工智能在机器人中的应用。二、中图分类号:TP18(工程技术类);(宋体、小四号)三、关键词:人工智能(Artificial intelligence);机器人(Robot)(宋体、小四号)检索式:人工智能*机器人检索式: Artificial intelligence AND Robot四、检索步骤和结果:(宋体、小四号)3、选择中文数据库检出相关文献: A、CNKI期刊全文数据库按关键词进行检索得相关文献:5篇(1)、人工智能在计算机网络技术中的应用 玉溪师范学院学报 2001 02 .B、选用数

3、据库:博硕士论文万方数据库按关键词进行检索得相关文献:5篇(1)C、选用数据库:维普数据库按关键词进行检索得相关文献:5篇 D、根据所选课题,运用追溯法查找与课题相关的文献:5篇(1)5、利用搜索引擎:A、“百度”http:/ 2002-5-11五、评估检索结果:(宋体、小四号)通过对检索结果进行分析,发现相关文献有一定的深度和广度,这个选题重点在于探讨人工智能在计算机系统的一些关键技术,并且通过介绍国内外已实现的人工智能计算机系统的原型系统,为其计算机在人工智能上应用提供理论参考。在资料查询过程中充分考虑到了各项关键技术的应用及一些原型系统的发展,对检索策略不用再做调整,此结果有一定的新颖性

4、和资料具有一定的权威性,为该课题的研究提供了可靠性资料。六、课程论文:(五号字、宋体)计算机在人工智能中的应用(The calculator is applicated in the artificial intelligence)某某(某院某班)摘要:以介绍机器人控制技术的发展及机器人智能控制的现状为基础,叙述了模糊控制和人工神经网络控制在机器人中智能控制的方法.讨论了机器人智能控制中的模糊控制和变结构控制,神经网络控制和变结构控制,以及模糊控制和神经网络控制等几种智能控制技术的融合。并对模糊控制和神经网络控制等方法中的局限性作出了说明。关键词:机器人(Robot);智能控制(intelli

5、gence control);模糊控制(Misty control);人工神经网络(Artificial nerve network)中图分类号:181机器人智能控制技术的发展从机器人诞生到20世纪80年代初,机器人技术经历了一个长期缓慢的发展过程.到了20世纪90年代,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展智能机器人的研究是目前机器人研究中的热门课题.作为一门新兴学科,它融合了神经生理学、心理学、运筹学、控制论和计算机技术等多学科思想和技术成果.智能控制的研究主要体现在对基于知识系统、模糊逻辑和人工神经网络的研究.智能机器人可以在非预先规定的环境中自行解

6、决问题.智能机器人的技术关键就是自适应和自学习的能力,而模糊控制和神经网络控制的应用显示出诸多优势,具有广阔的应用前景。1.1机器人控制技术的发展早期的机器人系统,由于需要完成的任务比较简单,而且对动态特性的要求不高,其系统可看成是机器人各关节控制器简单的组合.随着机器人技术的发展,机器人控制器对各关节在整个过程中位置、速度及加速度都有一定的要求,因此可采用独立关节控制原则,在各关节构成PID控制.由于机器人操作臂是一个高度非线性的系统工业用的低速操作臂应用常规的PID反馈控制可以满足控制要求,但为实现高速运动,要求具有较好的控制品质,PID反馈控制难以取得较好的控制效果.在传统的控制方法中,

7、它们依赖数学模型。但是,由于操作臂的参数不能精确得到,模型参数与实际参数不匹配时,便会产生伺服误差。当机器人工作环境及工作目标的性质和特征在工作过程中随时间发生变化时,控制系统的特性有未知和不定的特性.这未知因素和不定性使控制系统性能降低.因此,采用传统的控制方案已不能满足控制要求。在研究被控对象的模型存在不确定性及未知环境交互作用较强情况下的控制时,智能控制方法得到了成功的应用。近年来,随着人们对机器人高速高精度要求的不断提高,使得整个机器人系统对其控制部分的要求也越来越高,开发具有智能的机器人已经成为人们研究的热点。1.2机器人智能控制的现状近几年,机器人智能控制在理论和应用方面都有较大的

8、进展。在模糊控制方面,由J.J.Buckley等人论证了模糊系统的逼近特性;E.H.Mamdan首次将模糊理论运用于一台实际机器人,把模糊控制技术在机器人中的应用得以展现1.而且,模糊系统在机器人的建模、控制、对柔性臂的控制、模糊补偿控制、以及移动机器人路径规划等各个领域都得到了广泛的应用。在机器人神经网络控制方面,CMCA(CereellaModelControllerArticulation)是应用较早的种控制方法,它的最大特点是实时性好,尤其适于多自由度操作臂的控制,W.T.Miller等2还行了实验研究,验证了该方法的有效性。机器人智能控制方法1.3机器人的模糊控制英国学者E.H.Ma

9、mdani在1974年首次成地将模糊集理论运用于工业锅炉的过程控制之,并于20世纪80年代初又将模糊控制引进到器人的控制中.被控对象是一个具有两个旋转节的操作臂,每个关节由直流电动机驱动.关节实际转角通过测速发电机由A/D转换电路获,其角速度通过SOC的记忆存储器编程来实.其主要是对操作臂模糊控制系统,分别进行阶响应测试和跟踪控制试验.控制结果证明了模控制方案具有可行性和优越性。由LinCM等人3提出了在模糊控制器结构基础上,引入PI调节机制达到对阶跃输入的快响应和达到消除隐态误差的效果.通过相平面对两种不同区域的启发性分类,可得到一组简的模糊规则,从而简化了模糊规则库和算法,使终的控制器易于

10、实现.该控制方案通过仿真实得到验证。由邓辉等人4提出了一种基于模糊聚类和模控制的模糊逆模型控制方法,并将其应用于力学方程未知的机械手轨迹控制.采用c均值类算法构造两关节机械手模糊模型,并由此构模糊系统的逆模型.在提出的模糊逆模型控制构中,离散时间滑模控制和时延控制用于补偿糊建模误差和外扰动,保证系统全局稳定性,并善其动态和稳态性能.系统稳定性和轨迹误差收敛性,通过稳定性定理得到证明。2机器人的神经网络控制神经网络的研究20世纪60年代,并在20世80年代得到了快速的发展.近几年来,神经网研究的目标是复杂的非线性系统的识别和控制方面,神经网络在控制应用上具有以下特点:能充分逼近任意复杂的非线性系

11、统;能够学习与应不确定系统的动态特性;有很强的鲁棒性和错性等.因此,神经网络对机器人控制具有很大吸引力。在机器人的神经网络动力学控制方法中,典型的是计算力矩控制和分解运动加速度控制,前者在关节空间闭环,后者在直角坐标空间闭环。在基于模型计算力矩控制结构中,关键是逆运动学计算,为实现实时计算和避免参数不确定性,可通过神经网络来实现输入输出的非线性关系。对多自由度的机器人手臂,输入参数多,学习时间长为了减少训练数据样本的个数,可将整个系统分解为多个子系统,分别对每个子系统进行学习,这样就会减少网络的训练时间,可实现实时控制。由Albus提出了一种基于人脑记忆和神经肌肉控制模型的控制机器人关节控制方

12、法,即CMCA法.该方法以数学模块为基础,采用查表方式产生一个以离散状态输入为响应的输出矢量。在控制中,状态矢量输入来自机器人关节的位置与速度反馈,输出矢量为机器人驱动信号.也可以利用CMCA模拟机器人动力学方程,计算实现期望运动所需力矩作为前反馈控制力矩,采用自适应反馈控制消除输入扰动及参数变化引起的误差经过仿真实验证明,经过4个控制周期后,控制过程的误差趋近于零58。F.L.Lewis9,10基于无源理论,提出了一类网络利用功能连接神经网络逼近机器人动力学模型,连接权在线调整方法,可保证神经网络自适应控制算法闭环稳定.2.1机器人智能控制技术的融合2.1.1模糊控制和变结构控制的融合在模糊

13、变结构控制器(FVSC)中,许多学者把变结构框架中的每个参数或是细节采用模糊系统来逼近或推理,仿真实验证明该方法比PID控制或滑模控制更有效1114.在设计常规变结构控制律时,若函数系数取得很大,系统就会产生很多的抖振,如果用引入边界层方法消除抖振,就会产生很大的误差;若该系数取较小值,鲁棒性就会变差.因此,金耀初等人15提出了通过引入模糊系统来动态预测和估计系统中不确定量的方法.模糊系统中的输入分为两种:一种为系统的综合偏差模糊值;另一种为偏差增量模糊值.它的输出是对上述函数中的系数进行模糊估值.仿真结果表明抖振现象得到了抑制.还有人在初始建模阶段采取模糊系统辨识其后在变结构控制中对动力学模

14、型进行自适应学习.在这种控制方案中,模糊控制和变结构控制之间的界限很清晰,从仿真结果看,控制性能也较好。2.1.2神经网络和变结构控制的融合神经网络和变结构控制的融合一般称为NNVSC.实现融合的途径一般是利用神经网络来近似模拟非线性系统的滑动运动,采用变结构的思想对神经网络的控制律进行增强鲁棒性的设计,这样就可避开学习达到一定的精度后神经网络收敛速度变慢的不利影响.经过仿真实验证明该方法有很好的控制效果.但是由于变结构控制的存在,系统会出现力矩抖振。牛玉刚等人14将变结构控制和神经网络的非线性映射能力相结合,提出了一种基于神经网络的机械手自适应滑模控制器.如果考虑利用滑模控制技术,需要知道系

15、统的不确定性的上界,但在实际应用中,许多系统的不确定界却难以得到。因此,利用神经网络估计系统的不确定性的未知界,克服了常规滑模控制需要已知不确定性界的限制,但是由于滑模控制的存在,就有抖振现象为了消除抖振,可用S型函数代替符号函数。经过仿真实验,该控制器能够有效的补偿系统不确定性的影响,保证机器人系统对期望轨迹的快速跟踪。2.1.3模糊控制和神经网络控制的融合模糊控制和神经网络控制的融合,一般称为模糊神经网络(Fuzzifiedneuralnetwork)或神经网络模糊控制器(neuro fuzzycontroller)。模糊系统和人工神经网络相结合实现对控制对象进行自动控制,是由美国学者B.

16、Kosko首先提出的15.模糊系统和神经网络都属于一种数值化和非数学模型函数估计器的信息处理方法,它们以一种不精确的方式处理不精确的信息。模糊控制引入了隶属度的概念,即规则数值化,从而可直接处理结构化知识;神经网络则需要大量的训练数据,通过自学习过程,借助并行分布结构来估计输入与输出间的映射关系.虽然模糊控制与神经网络处理模糊信息的方式不同,但仍可以将二者结合起来.利用模糊控制的思维推理功能来补充神经网络的神经元之间连接结构的相对任意性;以神经网络强有力的学习功能来对模糊控制的各有关环节进行训练.可利用神经网络在线学习模糊集的隶属度函数,实现其推理过程以及模糊决策等.在整个控制过程中,两种控制

17、动态地发生作用,相互依赖。王洪斌等人16针对机器人逆运动学问题提出了基于模糊神经网络的解决方案.该方案对二自由度刚性机器人进行仿真实验,证明了其有效性和可行性.王耀南等人17也介绍了模糊神经网络的应用.介绍了一种模糊神经网络控制与传统的PD控制相结合的机器人学习控制系统,该控制具有自学习、自适应、控制精度高等特点。智能融合技术还包括基于遗传算法的模糊控制方法18,19.遗传算法作为一种新的搜索算法具有并行搜索,全局收敛等特性,将遗传算法应用于模糊控制中,可以解决一般模糊控制中隶属度函数及规则参数调节问题.这方面研究典型代表人物有Karr20,Homaifar21,Ishibuchi22等人也有

18、基于遗传算法的人工神经网络学习算法23以及基于粗糙集理论进行BP网络设计的方法24.在粗糙集改进BP网络的方法中,主要是应用粗糙集的理论和方法,从给定学习样本数据中发现一组规则,并根据这些规则去建立网络模型中相应的隐层节点,然后用BP算法迭代出网络的参数.和以前实验法选择隐层数量和隐层内神经元个数的方法相比,节约了计算时间,简化了选择的方法。3结语智能控制方法提高了机器人的速度及精度但是智能控制方法本身也有着自身的局限性。例如机器人模糊控制中的规则库如果很庞大,推理过程的时间就会过长;如果规则库很简单,控制的精确性又要受到限制;无论是模糊控制还是变结构控制,抖振现象都会存在,这将给控制带来严重的影响;神经网络的隐层数量和隐层内神经元数的合理确定仍是目前神经网络在控制方面所遇到的问题,另外神经网络易陷于局部极小值等问题都是智能控制设计中要解决的问题。参考文献:12 3 4

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1