壁面吹吸和表面活性剂作用下的流动稳定性研究.docx

上传人:罗晋 文档编号:11732195 上传时间:2021-09-01 格式:DOCX 页数:7 大小:73.38KB
返回 下载 相关 举报
壁面吹吸和表面活性剂作用下的流动稳定性研究.docx_第1页
第1页 / 共7页
壁面吹吸和表面活性剂作用下的流动稳定性研究.docx_第2页
第2页 / 共7页
壁面吹吸和表面活性剂作用下的流动稳定性研究.docx_第3页
第3页 / 共7页
壁面吹吸和表面活性剂作用下的流动稳定性研究.docx_第4页
第4页 / 共7页
壁面吹吸和表面活性剂作用下的流动稳定性研究.docx_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《壁面吹吸和表面活性剂作用下的流动稳定性研究.docx》由会员分享,可在线阅读,更多相关《壁面吹吸和表面活性剂作用下的流动稳定性研究.docx(7页珍藏版)》请在三一文库上搜索。

1、附件 2论文中英文摘要作者姓名: 高鹏论文题目 :壁面吹吸和表面活性剂作用下的流动稳定性研究作者简介 :高鹏,男, 1981 年 8 月出生, 2005 年 9 月师从于中国科学技术大学陆夕云教授,于 2008 年 7 月获博士学位。中文摘要流动稳定性分析是流体力学的一个重要研究领域。流动失稳现象广泛存在于工程问题和自然界中,导致流动不稳定性的物理因素也是多种多样的。壁面吹吸和表面活性剂是影响流动稳定性的重要因素,同时也是进行流动控制的常用手段,在工业领域中具有广泛的应用背景。人们通过大量研究,对这些因素如何影响流动稳定性特征建立了一些认识,例如:壁面吸气可以增强边界层的稳定性,吹气则相反;

2、表面活性剂引起的 Marangoni 效应主要起着增强界面流动稳定性的作用,而其不稳定化作用只有在界面剪切率不为零时才有可能出现。然而,已有的工作主要集中于关于定常流动和简单界面问题的研究,对于工业领域和自然界中广泛存在的非定常和多界面流动问题,其稳定性问题要复杂很多,而已有的结论能否直接推广到这些复杂问题尚不清楚,亟待开展深入研究。本文以平面Poiseuille 流动、 平板振荡 Stokes 层、 薄膜流动等流体力学中的典型问题为研究对象,通过发展相关的解析、半解析和数值计算方法并将其相互结合,研究了壁面吹吸、表面活性剂、 流动周期性变化和多界面等因素相互耦合作用下的复杂流动问题的稳定性特

3、征。研究发现,早期简单流动条件下得到的结论往往不适用于这些复杂流动问题,在一些情况下甚至可以得到完全相反的结论,取得的研究结果为人们利用吹吸和表面活性剂进行流动控制提供了全新的认识。本博士论文的相关研究成果均发表在本学科最为权威的学术期刊Journal of Fluid Mechanics (5篇) 和 Physics of Fluids (篇1 ) 上。在这些工作中,主要创新及学术贡献如下:1. 基于 Floquet 理论和线性稳定性分析, 研究了周期性壁面吹吸对平面Poiseuille 流动稳定性的影响。 我们考虑了固定压力梯度和固定流量两种典型情况, 并分别与不带吹吸的流动以及定常吹吸作

4、用下的流动问题进行了对比分析。采用 Chebyshev 谱配置法计算分析了基本流场和稳定性特征, 同时在小吹吸振幅条件下给出了基本流场和主要模态扰动增长率的渐近解,数值和解析两种方法得到了相互印证的结果,进而探讨了流动物理机理。结果表明:周期性吹吸带来基本速度型的改变,在壁面附近引起类似于振荡Stokes 层的周期流场, 并由于整流效应产生了定常的速度修正; 与不带壁面吹吸的平面Poiseuille 流动相比,在大部分吹吸参数下临界模态的增长率都会变大,从而使得流动的临界Reynolds 数变小,说明周期吹吸会增强流动的不稳定性,促进流动由层流向湍流的转捩;由于定常吹吸作用下的 Poiseui

5、lle 流动具有更强的稳定性, 因此周期性吹吸与定常吹吸的作用效果完全相反, 周期性吹吸更有利于增强流动混合; 流动不稳定性的增强主要是由周期性吹吸对基本速度型的整流效应以及基本流场的周期性分量与扰动波之间的相互调制引起的; 在固定压力梯度和固定流量两种情况下, 壁面附近的基本流场具有类似的结构, 从而两种流动的稳定性特征也十分相似。该研究成果发表在Physics of Fluids上。2. 研究了定常均匀壁面吹吸对典型的周期性振荡边界层即平板Stokes 层的稳定性影响。首先推导给出了带壁面吹吸时解析形式的基本流场,发现吸气会减小 Stokes 层沿法向的贯穿深度,吹气的作用则相反;吸气和吹

6、气都会增大基本速度型沿法向的波长。由于流动在空间上的半无限特征,稳定性分析中的传统数值计算具有很大的局限性。为此,我们将研究平板 Stokes 层稳定性问题的半解析方法推广到带壁面吹吸的情况,分析了扰动模态的增长率和流场结构。结果表明:扰动模态的结构与不带吹吸的 Stokes 层在定性上是相似的;流动的临界Reynolds 数随着吹气速度的增加单调下降,随着吸气速度的增加单调上升,表明壁面吸(吹)气起着增强(减弱)流动稳定性的作用;与定常边界层不同,基本流场的非平行效应对Stokes 层稳定性的影响几乎可以忽略,因此壁面吹吸主要是通过改变基本速度场的流向分量来影响 Stokes 层的稳定性;发

7、现扰动增长对远场速度型非常敏感,提供了在经典Stokes 层稳定性研究中实验结果与理论结果不一致的一种合理解释;基于流动物理分析,给出了预测临界Reynolds 数的近似公式,发现流动的临界Reynolds 数近似地随吹吸速度成指数变化, 这对实际应用中利用壁面吹吸对周期性振荡边界层进行流动控制具有指导意义。该成果发表在Journal of Fluid Mechanics上。3. 研究了双层薄膜流动的无惯性不稳定特性以及活性剂的影响特性。 该问题包含一个零剪切自由面和一个非零剪切界面。 该项研究包括两部分内容, 一是采用较为直观的方法阐述了长波扰动的失稳机制,另一是分析了表面活性剂和界面活性剂

8、对流动稳定性的影响特性。在长波条件下, 证明了自由面和界面的变形满足两个相互耦合的对流扩散方程, 推导得到了其正则模解的基本形式, 并由其直接判断出流动是否会失稳。首次揭示了自由面和界面扰动波之间的共振机制:每个模态对应的自由面波和界面波之间并不是严格同相或者反相,而是存在一个相位差; 该相位差对应的扰动流场和重力法向分量驱动的扰动流场共同决定了扰动的指数增长,从而导致流动的失稳。在有表面活性剂和界面活性剂的条件下,存在四个正则模, 其中最多只有一个模态是不稳定的。 表面活性剂的作用取决于流体的粘性比: 当上层流体的粘性大于但是仍接近下层流体的粘性时, 表面活性剂会减弱流动的无惯性不稳定; 而

9、当上层流体的粘性远远大于下层流体时, 表面活性剂也有可能增强流动的无惯性不稳定, 这也是首次发现表面活性剂可以增强零剪切自由面的不稳定性。 界面活性剂也有可能增强或减弱流动的稳定性,主要取决于活性剂的浓度;特别地,当上层流体的粘性小于下层流体时,界面活性剂也会导致流动的失稳。相关成果已在Journal of FluidMechanics 上发表两篇论文。4. 采用数值计算和渐近分析相结合的方法, 研究了表面活性剂作用下的周期性振荡流体层的线性稳定性,探讨了 Marangoni 效应和周期性流动效应共同作用下的新机制。在长波扰动条件下, 采用渐近方法发现了两个与流动稳定性相关的 Floquet

10、模, 它们的扰动增长率满足一个二次方程。 表面活性剂会减小长波扰动出现不稳定的参数范围, 因而可以增强长波扰动的稳定性。 在任意波长条件下, 采用 Chebyshev 谱配置法对控制方程进行了求解,分析了广泛参数条件下的临界Reynolds 数。结果表明:引入表面活性剂之后,流动可能出现行波扰动形式的失稳,而没有表面活性剂时流动只可能出现驻波形式的失稳;当Marangoni 数较小时,表面活性剂会增强流动的稳定性;当 Marangoni 数较大时,活性剂也可能促进流动的失稳。因而,表面活性剂不仅可以促进流动的失稳,而且这种作用效应在多层薄膜和非定常薄膜流动中普遍存在。 同时, 表明活性剂也可以

11、促进零剪切自由面流动的不稳定性,表明剪切率并不是活性剂不稳定化作用的本质因素。相关成果已在Journal of Fluid Mechanics 上发表两篇论文。关键词: 流动稳定性,壁面吹吸,表面活性剂, Floquet 理论,周期流动,Stokes层,薄膜流动,自由面流动Studies on the Stability of Flowswith Wall Suction/Injection and SurfactantGao PengABSTRACTHydrodynamic stability is an important area in fluid mechanics, since th

12、e instability or stability of flows exists widely in nature and engineering. The flow instability can be triggered by a variety of factors, among which wall suction/injection and surfactants play an important role on the instability. Meanwhile, the suction/injection and surfactants are two typical a

13、pproaches for flow control and have been widely employed in industrial applications. Based on extensive previous studies, effects of suction/injection and surfactants on the stability of flows seem to be well understood. For example, a wall suction/injection can enhance/weakenthe stability of bounda

14、ry layers, and the presence of surfactants stabilizes the interfacial flows through a Marangoni effect and has a destabilizing influence only when the interfacial shear is nonzero. However, most of previous studies are only devoted to steady flows with one interface. For widespread flow systems with

15、 unsteadiness and multiple interfaces, the stability analysis becomes much more complicated, and it is still unclear whether the obtained conclusions can be straightforwardly extended to these complex flows. Therefore, it is desirable to further investigate the effects of suction/injection and surfa

16、ctants on the stability of more extensive flows.In this dissertation, we study the stability of planar Poiseuille flow, flat Stokes layer and film flow with combined effects of wall suction/injection, surfactants, time periodicity and multiple interfaces, using analytical and semi-analytical solutio

17、ns as well as numerical calculations. Our results show that the conclusions based on simple flows can not be extended to complex problems in general. In some cases, the effect of suction/injection and surfactants is completely opposite to the traditional one. Thus, the present work provides a better

18、 understanding for flow control using wall suction/injection and surfactants. The relevant results have been published in the Journal of Fluid Mechanics (5 papers) and Physics of Fluids(1 paper), which are both the most prestigious journals in fluid mechanics. The main contributions are listed as fo

19、llows:1. The stability of plane Poiseuille flow modulated by oscillatory wall suction/injection is investigated based on linear stability analysis together with Floquet theory. Two typical flows with either the driven pressure gradient and or the flow rate constant are considered, and the stability

20、characteristics are compared with the Poiseuille flow subject to zero or steady suction/injection. The basic flow and the stability characteristics are analyzed using a Chebyshev collocation method. When the amplitude of suction/injection is sufficiently small, asymptotic solutions of the basic velo

21、city profile and the growth rate of disturbances are also obtained to explore the underlying mechanism. The numerical and analytical results agree well with each other. Results show that the modulation leads to a periodic flow field adjacent to the wall, which is similar to the oscillatory Stokes la

22、yer, and to a steady velocity correction because of streaming effect. Compared with the pure Poiseuille flow, the growth rates of the dominant mode is increased and the critical Reynolds number becomes lower, indicating that wall suction/injection has a destabilizing effect and promotes the transiti

23、on from laminar flow to turbulence. Since steady suction/injection is stabilizing, oscillatory suction/injection is preferred for flow mixing. The destabilizing effect is caused by the steady correction of the velocity profile and the modulation between the periodic component of the basic flow and t

24、he disturbance wave. The stability characteristics of flows with fixed pressure gradient and fixed flow rate are similar with each other because the basic velocity profiles near the wall have the same asymptotic form. This work has been published in thePhysics of Fluids.2. Effects of uniform and ste

25、ady wall suction/injection on the linear stability of a typical periodic boundary layer, i.e. flat Stokes layer, are studied. An analytical solution of the basic velocity profile is derived and indicates that suction/injection decreases/increases the penetration length of the Stokes layer, and both

26、suction and injection can increase the normal wavelength. The traditional numerical methods for stability analysis cannot be used because of the spatial semi-infinite behavior of the problem. Alternatively, a semi-analytical method for the linear stability of pure Stokes layer is extended to the cas

27、e with wall suction/injection and is employed to calculate the growth rate and flow structure of disturbances. It is shown that the structures of perturbation modes are qualitatively similar to the zero suction/injection case. The critical Reynolds number for the onset of instability decreases monot

28、onically with increasing injection velocity and increases with the suction velocity, indicating a stabilizing/destabilizing effect of suction/injection. Different from steady boundary layers, the change of the stability behavior of Stokes layers is primarily contributed from the modification of the

29、streamwise velocity, while the nonparallel effect is nearly negligible. We found that the disturbance growth is sensitive to the far-field velocity, which provides a reasonable explanation of the discrepancy between the experimental and theoretical results on the stability of pure Stokes layers. Fur

30、thermore, an empirical formula is presented to predict the critical Reynolds number, which can be approximated using an exponential relation with the suction/injection velocity. This work hasbeen published in theJournal of Fluid Mechanics3. The inertialess instability of a two-layer film flow is inv

31、estigated together with the effects of surfactants. This problem consists of a free surface with a zero shear rate and an interface with a nonzero shear rate. We presented an intuitive interpretation of the underlying mechanism of the long-wave instability on the one hand, and examined the effects o

32、f surface and interfacial surfactants on the other hand. In the limit of long waves, two coupled advection-diffusion equations for the surface and interfacial displacements are derived. The normal-mode solution of these equations has a very simple formulation and the stability/instability can be rea

33、dily identified. We explained the resonance mechanism between the surface and interfacial waves for the first time: the waves are not exactly in phase or out of phase by 二,but with an additional phase difference; the combined effects of the disturbance flow associated with this phase difference and

34、the flow driven by gravity lead to an exponential growth of the disturbances and hence the instability. In the presence of surface and interfacial surfactants, four normal modes are detected, and at most one of them may be unstable. The effect of surface surfactants depends on the viscosity ratio: i

35、t is stabilizing when the viscosity of the upper fluid is larger but close to the lower fluid and can enhance the inertialess instability when the viscosity of the upper fluid is much larger than the lower one. This is the first time to discover the destabilizing effect of surfactants on a zero-shea

36、r surface. The interfacial surfactants can also be stabilizing or destabilizing depending on the concentration of the surfactants. Specifically, it destabilizes the flow when the viscosity of the upper fluid is larger. Based on these results, two papers have been published in theJournal of Fluid Mec

37、hanics4. Using numerical calculations and asymptotic analysis, the linear stability of an oscillatory fluid layer covered by an insoluble surfactant is studied for the purpose of investigating the new mechanism of Marangoni effect on periodic flow. In the limit of long-wave perturbations, two partic

38、ular Floquet modes associatedwith the instability are identified and the corresponding growth rates are obtained by solving a quadratic equation. The surfactant tends to shrink the unstable regions for the stability parameters, and thus plays a stabilizing role in the long-wave disturbances. The sta

39、bility of arbitrary-wavelength disturbances is numerically analyzed using a Chebyshev collocation method, and the critical Reynolds numbers are calculated for a wide range of parameters. Results show that the disturbance modes in the form of traveling waves may be induced by the surfactant and domin

40、ate the instability of the flow, while only stationary-wave instability can occur for a clean surface. The flow is stabilized when the Marangoni number is small and can be destabilized at large Marangoni numbers. Therefore, the destabilizing effect of surfactants can not only occur, but also can be

41、found in a variety of multiple-interface flows and unsteady films. Moreover, surfactants could destabilize flows withzero-shear-rate surface, indicating that shear rate is not essential for the destabilizing effect. Two papers have been published in theJournal of Fluid Mechanics based on the above results.Key words: stability analysis, suction/injection, surfactant, Floquet theory,periodic flow, Stokes layer, film flow, free-surface flow

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1