第八章测量误差理论.doc

上传人:本田雅阁 文档编号:2534732 上传时间:2019-04-05 格式:DOC 页数:11 大小:173.02KB
返回 下载 相关 举报
第八章测量误差理论.doc_第1页
第1页 / 共11页
第八章测量误差理论.doc_第2页
第2页 / 共11页
第八章测量误差理论.doc_第3页
第3页 / 共11页
第八章测量误差理论.doc_第4页
第4页 / 共11页
第八章测量误差理论.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《第八章测量误差理论.doc》由会员分享,可在线阅读,更多相关《第八章测量误差理论.doc(11页珍藏版)》请在三一文库上搜索。

1、第六章 测量误差理论(theory of errors)第六章 测量误差理论(theory of errors)161 观测误差(observation error)162 衡量精度的标准3一、中误差3二、容许误差4三、相对误差463 误差传播定律(law of propagation of errors)5一、倍数函数5二、和差函数5三、线性函数6四、一般函数664 算术平均值及其中误差765 加权平均值及其中误差9思考与练习题1061 观测误差(observation error)研究测量误差的来源、性质及其产生和传播的规律,解决测量工作中遇到的实际问题而建立起来的概念和原理的体系,称为测

2、量误差理论。 在实际的测量工作中发现:当对某个确定的量进行多次观测时,所得到的各个结果之间往往存在着一些差异,例如重复观测两点的高差,或者是多次观测一个角或丈量若干次一段距离,其结果都互有差异。另一种情况是,当对若干个量进行观测时,如果已经知道在这几个量之间应该满足某一理论值,实际观测结果往往不等于其理论上的应有值。例如,一个平面三角形的内角和等于180,但三个实测内角的结果之和并不等于180,而是有一差异。这些差异称为不符值。这种差异是测量工作中经常而又普遍发生的现象,这是由于观测值中包含有各种误差的缘故。 任何的测量都是利用特制的仪器、工具进行的,由于每一种仪器只具有一定限度的精密度,因此

3、测量结果的精确度受到了一定的限制。且各个仪器本身也有一定的误差,使测量结果产生误差。测量是在一定的外界环境条件下进行的,客观环境包括温度、湿度、风力、大气折光等因素。客观环境的差异和变化也使测量的结果产生误差。测量是由观测者完成的,人的感觉器官的鉴别能力有一定的限度,人们在仪器的安置、照准、读数等等方面都会产生误差。此外,观测者的工作态度、操作技能也会对测量结果的质量(精度)产生影响。观测值中存在观测误差有下列三方面原因:1、观测者 由于观测者的感觉器官的鉴别能力的局限性,在仪器安置、照准、读数等工作中都会产生误差。同时,观测者的技术水平及工作态度也会对观测结果产生影响。2、测量仪器(surv

4、eying instrument) 测量工作所使用的测量仪器都具有一定的精密度,从而使观测结果的精度受到限制。另外,仪器本身构造上的缺陷,也会使观测结果产生误差。3、外界观测条件(field observation condition) 外界观测条件是指野外观测过程中,外界条件的因素,如天气的变化、植被的不同、地面土质松紧的差异、地形的起伏、周围建筑物的状况,以及太阳光线的强弱、照射的角度大小等。有风会使测量仪器不稳,地面松软可使测量仪器下沉,强烈阳光照射会使水准管变形,太阳的高度角、地形和地面植被决定了地面大气温度梯度,观测视线穿过不同温度梯度的大气介质或靠近反光物体,都会使视线弯曲。产生折

5、光现象。因此,外界观测条件是保证野外测量质量的一个重要要素。观测者、测量仪器和观测时的外界条件是引起观测误差的主要因素,通常称为观测条件。观测条件相同的各次观测,称为等精度观测。观测条件不同的各次观测,称为非等精度观测。任何观测都不可避免地要产生误差。为了获得观测值的正确结果,就必须对误差进行分析研究,以便采取适当的措施来消除或削弱其影响。观测误差按其性质,可分为系统误差、偶然误差和粗差。(1)系统误差。由仪器制造或校正不完善、观测员生理习性、测量时外界条件、仪器检定时不一致等原因引起。在同一条件下获得的观测列中,其数据、符号或保持不变,或按一定的规律变化。在观测成果中具有累计性,对成果质量影

6、响显著,应在观测中采取相应措施予以消除。 (2) 偶然误差。它的产生取决于观测进行中的一系列不可能严格控制的因素(如湿度、温度、空气振动等)的随机扰动。在同一条件下获得的观测列中,其数值、符号不定,表面看没有规律性,实际上是服从一定的统计规律的。随机误差又可分两种:一种是误差的数学期望不为零称为“随机性系统误差”;另一种是误差的数学期望为零黍为偶然误差。这两种随机误差经常同时发生,须根据最小二乘法原理加以处理。(3)粗差。是一些不确定因素引起的误差,国内外学者在粗差的认识上还未有统一的看法,目前的观点主要有几类:一类是将粗差看用与偶然误差具有相同的方差,但期望值不同;另一类是将粗差看作与偶然误

7、差具有相同的期望值,但其方差十分巨大;还有一类是认为偶然误差与粗差具有相同的统计性质,但有正态与病态的不同。以上的理论均是建立在把偶然误差和粗差均为属于连续型随机变量的范畴。还有一些学者认为粗差属于离散型随机变量。当观测值中剔除了粗差,排除了系统误差的影响,或者与偶然误差相比系统误差处于次要地位后,占主导地位的偶然误差就成了我们研究的主要对象。从单个偶然误差来看,其出现的符号和大小没有一定的规律性,但对大量的偶然误差进行统计分析,就能发现其规律性,误差个数愈多,规律性愈明显。例如,在相同的观测条件下,对358个三角形的内角进行了观测。由于观测值含有偶然误差,致使每个三角形的内角和不等于180。

8、设三角形内角和的真值为X,观测值为L,其观测值与真值之差为真误差。用下式表示为: (i=1,2,358)(6-1)由(6-1)式计算出358个三角形内角和的真误差,并取误差区间为0.2,以误差的大小和正负号,分别统计出它们在各误差区间内的个数V和频率V/n,结果列于表6-1。表61 偶然误差的区间分布误差区间d正 误 差负 误 差合 计个数V频率V/n个数V频率V/n个数V频率V/n0.00.2450.126460.128910.2540.20.4400.112410.115810.2260.40.6330.092330.092660.1840.60.8230.064210.059440.12

9、30.81.0170.047160.045330.0921.01.2130.036130.036260.0731.21.460.01750.014110.0311.41.640.01120.00660.0171.6以上0000001810.5051770.4953581.000从表6-1中可看出,最大误差不超过1.6,小误差比大误差出现的频率高,绝对值相等的正、负误差出现的个数近于相等。通过大量实验统计结果证明了偶然误差具有如下特性:(1)在一定的观测条件下,偶然误差的绝对值不会超过一定的限度,(2)绝对值小的误差比绝对值大的误差出现的可能性大,(3)绝对值相等的正误差与负误差出现的机会相等,

10、(4)当观测次数无限增多时,偶然误差的算术平均值趋近于零。即 (6-2)上述第四个特性说明,偶然误差具有抵偿性,它是由第三个特性导出的。图6-1 误差分布直方图如果将表6-1中所列数据用图6-1表示,可以更直观地看出偶然误差的分布情况。图中横坐标表示误差的大小,纵坐标表示各区间误差出现的频率除以区间的间隔值。当误差个数足够多时,如果将误差的区间间隔无限缩小,则图6-1中各长方形顶边所形成的折线将变成一条光滑的曲线,称为误差分布曲线。在概率论中,把这种误差分布称为正态分布。掌握了偶然误差的特性,就能根据带有偶然误差的观测值求出未知量的最可靠值,并衡量其精度。同时,也可应用误差理论来研究最合理的测

11、量工作方案和观测方法。62 衡量精度的标准衡量观测值精度的常用标准有以下几种一、中误差在等精度观测列中,各真误差平方的平均数的平方根,称为中误差,也称均方误差,即 (6-3)【例】 设有两组等精度观测列,其真误差分别为第一组-3、+3、-1、-3、+4、+2、-1、-4;第二组+1、-5、-1、+6、-4、0、+3、-1。试求这两组观测值的中误差。解:比较m1和m2可知,第一组观测值的精度要比第二组高。必须指出,在相同的观测条件下所进行的一组观测,由于它们对应着同一种误差分布,因此,对于这一组中的每一个观测值,虽然各真误差彼此并不相等,有的甚至相差很大,但它们的精度均相同,即都为同精度观测值。

12、二、容许误差由偶然误差的第一特性可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。这个限值就是容许误差或称极限误差。此限值有多大呢?根据误差理论和大量的实践证明,在一系列的同精度观测误差中,真误差绝对值大于中误差的概率约为32%;大于2倍中误差的概率约为5%;大于3倍中误差的概率约为0.3%。也就是说,大于3倍中误差的真误差实际上是不可能出现的。因此,通常以3倍中误差作为偶然误差的极限值。在测量工作中一般取2倍中误差作为观测值的容许误差,即容=2m(6-4)当某观测值的误差超过了容许的2倍中误差时,将认为该观测值含有粗差,而应舍去不用或重测。三、相对误差对于某些观测结果,有时单靠中

13、误差还不能完全反映观测精度的高低。例如,分别丈量了100m和200m两段距离,中误差均为0.02m。虽然两者的中误差相同,但就单位长度而言,两者精度并不相同,后者显然优于前者。为了客观反映实际精度,常采用相对误差。观测值中误差m的绝对值与相应观测值S的比值称为相对中误差。它是一个无名数,常用分子为1的分数表示,即 (6-5) 上例中前者的相对中误差为,后者为,表明后者精度高于前者。对于真误差或容许误差,有时也用相对误差来表示。例如,距离测量中的往返测较差与距离值之比就是所谓的相对真误差,即 (6-6)与相对误差对应,真误差、中误差、容许误差都是绝对误差。63 误差传播定律(law of pro

14、pagation of errors)当对某量进行了一系列的观测后,观测值的精度可用中误差来衡量。但在实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的。例如,水准测量中,在一测站上测得后、前视读数分别为a、b,则高差h=a-b,这时高差h就是直接观测值a、b的函数。当a、b存在误差时,h也受其影响而产生误差,这就是所谓的误差传播。阐述观测值中误差与观测值函数中误差之间关系的定律称为误差传播定律。本节就以下四种常见的函数来讨论误差传播的情况。一、倍数函数设有函数 (6-7)式中k为常数,x为直接观测值,其中误差为mx,现在求观测值函数Z的中误差mZ

15、。设x和Z的真误差分别为x和Z,由(6-7)式知它们之间的关系为Z=kx若对x共观测了n次,则 (i=1,2,n)将上式两端平方后相加,并除以n,得 (6-8)按中误差定义可知所以(6-8)式可写成或 (6-9)即观测值倍数函数的中误差,等于观测值中误差乘倍数(常数)。【例】 用水平视距公式D=kl求平距,已知观测视距间隔的中误差ml=1cm,k=100,则平距的中误差mD=100ml=1 m。二、和差函数设有函数 (6-10)式中x、y为独立观测值,它们的中误差分别为mx和my,设真误差分别为x和y,由(6-10)式可得若对x、y均观测了n次,则 将上式两端平方后相加,并除以n得上式中各项均

16、为偶然误差。根据偶然误差的特性,当n愈大时,式中最后一项将趋近于零,于是上式可写成(6-11)根据中误差定义,可得 (6-12)即观测值和差函数的中误差平方,等于两观测值中误差的平方之和。【例】 在ABC中,C=180AB,A和B的观测中误差分别为3和4,则C的中误差。三、线性函数设有线性函数 z=k1x1k2x2knxn (6-13) 式中x1、 x2、xn为独立观测值,k1、 k2、kn为常数,则综合(6-9)式和(6-12)式可得mz2=(k1m1)2(k2m2)2+ (knmn)2 (6-14)【例】 有一函数,其中x1、x2、x3的中误差分别为3mm、2mm、1mm,则。四、一般函数

17、设有一般函数(6-15)式中x1、x2、xn为独立观测值,已知其中误差为mi (i=1,2, ,n)。当xi具有真误差i时,函数Z则产生相应的真误差z, 因为真误差是一微小量,故将(6-15)取全微分,将其化为线性函数,并以真误差符号“”代替微分符号“d”,得式中是函数对xi取的偏导数并用观测值代入算出的数值,它们是常数,因此,上式变成了线性函数,按(6-14)式得 (6-16)上式是误差传播定律的一般形式。前述的(6-9)、(6-12)、(6-14)式都可看着上式的特例。【例】 某一斜距S=106.28m,斜距的竖角,中误差、,求改算后的平距的中误差。解:全微分化成线性函数,用“”代替“d”

18、,得应用(6-16)式后,得 cm在上式计算中,单位统一为厘米,是将角值的单位由秒化为弧度。64 算术平均值及其中误差设在相同的观测条件下对某量进行了n次等精度观测,观测值为L1、L2、Ln,其真值为X,真误差为1、2、n。由(6-1)式可写出观测值的真误差公式为 (i=1,2,n)将上式相加后,得 故若以x表示上式中右边第一项的观测值的算术平均值,即 (6-17)则 上式右边第二项是真误差的算术平均值。由偶然误差的第四特性可知,当观测次数n无限增多时,则,即算术平均值就是观测量的真值。在实际测量中,观测次数总是有限的。根据有限个观测值求出的算术平均值x与其真值X仅差一微小量。故算术平均值是观

19、测量的最可靠值,通常也称为最或是值(most probable value)。由于观测值的真值X一般无法知道,故真误差也无法求得。所以不能直接应用(6-3)式求观测值的中误差,而是利用观测值的最或是值x与各观测值之差V来计算中误差,V被称为改正数,即V=x-L(6-18)实际工作中利用改正数计算观测值中误差的实用公式称为白塞尔公式。即(6-19)利用V=0,VV=LV检核式,可作计算正确性的检核。在求出观测值的中误差m后,就可应用误差传播定律求观测值算术平均值的中误差M,推导如下:应用误差传播定律有 (6-20)由上式可知,增加观测次数能削弱偶然误差对算术平均值的影响,提高其精度。但因观测次数

20、与算术平均值中误差并不是线性比例关系,所以,当观测次数达到一定数目后,即使再增加观测次数,精度却提高得很少。因此,除适当增加观测次数外,还应选用适当的观测仪器和观测方法,选择良好的外界环境,才能有效地提高精度。【例】 对某段距离进行了5次等精度观测,观测结果列于表6-2,试求该段距离的最或是值、观测值中误差及最或是值中误差。计算见表6-2。表62 等精度观测计算序号L(m)V(cm)VV(cm)精 度 评 定1251.52-39mm2251.46+393251.49004251.48-115251.50+11V=0VV=20最后结果可写成x=251.490.01(m)。65 加权平均值及其中误

21、差此时当各观测量的精度不相同时,不能按算术平均值(6-17)式和中误差(6-19)及(6-20)式来计算观测值的最或是值和评定其精度。计算观测量的最或然值应考虑到各观测值的质量和可靠程度,显然对精度较高的观测值,在计算最或然值时应占有较大的比重,反之,精度较低的应占较小的比重,为此的各个观测值要给定一个数值来比较它们的可靠程度,这个数值在测量计算中被称为观测值的权(weight)。显然,观测值的精度愈高,中误差就愈小,权就愈大,反之亦然。在测量计算中,给出了用中误差求权的定义公式 (6-21)式中P为观测值的权,为任意常数,m为各观测值对应的中误差。在用上式求一组观测值的权Pi时,必须采用同一

22、值。当取P=1时,就等于m,即=m,通常称数字为1的权为单位权,单位权对应的观测值为单位权观测值。单位权观测值对应的中误差为单位权中误差。当已知一组非等精度观测值的中误差时,可以先设定值,然后按(6-21)式计算各观测值的权。例如:已知三个角度观测值的中误差分别为m1=3、m2=4、m3=5,它们的权分别为:若设 则 P1=1 P2=9/16 P3=9/25若设 则 P1=1/9 P2=1/16 P3=1/25上例中P1:P2:P3=P1:P2:P3=1:0.56:0.36。可见,m值取得不同,权值也不同,但不影响各权之间的比例关系。当时,P1就是该问题中的单位权,m1=3就是单位权中误差。中

23、误差是用来反映观测值的绝对精度,而权是用来比较各观测值相互之间的精度高低。因此,权的意义在于它们之间所存在的比例关系,而不在于它本身数值的大小。对某量进行了n次非等精度观测,观测值分别为L1、L2、Ln,相应的权为P1、P2、Pn,则加权平均值x就是非等精度观测值的最或是值,计算公式为 (6-22)显然,当各观测值为等精度时,其权为P1=P2=Pn=1,上式就与求算术平均值的(6-17)式一致。设L1Ln的中误差为m1mn,则根据误差传播定律,由(6-22)可导出加权平均值的中误差为 (6-23)而由(6-21)式,有,代入上式得(6-24)实际计算时,上式中的单位权中误差m一般用观测值的改正

24、数来计算,其公式为: (6-25)【例】 如图6-2所示,从已知水准点A、B、C经三条水准路线,测得E点的观测高程Hi及水准路线长度Si。求E点的最或是高程及其中误差。计算见表6-3,计算中的定权公式为Pi=1/Si。图6-2水准路线表6-3 非等精度观测平差计算路线E点高程H(m)路线长(km)V(mm)PVV精 度 评 定1527.4594.50.221022.00 mmmm2527.4843.20.31-1569.753527.4584.00.251130.25x=527.4690.78122最后结果可写成HE=527.4690.009(m)。思考与练习题1、 应用测量误差理论可以解决测

25、量工作中的那些问题?2、 测量误差的主要来源有哪些?偶然误差具有哪些特性?3、 何谓中误差?何谓容许误差?何谓相对误差?4、 何谓等精度观测?何谓非等精度观测?权的定义和作用是什么?5、 何谓误差传播定律?6、 某圆形建筑物直径D=34.50m,mD=0.01m,求建筑物周长及中误差。7、 用长30m的钢尺丈量310尺段,若有尺段中误差为5mm,求全长L及其中误差。8、 对某一距离进行了6次等精度观测,其结果为:398.772m,398.784m,398.776m,398.781m,398.802m,398.779m。试求其算术平均值、一次丈量中误差、算术平均值中误差和相对中误差。9、 测得一正方形的边长a65.37m0.03m。试求正方形的面积及其中误差。10、 用同一台经纬仪分三次观测同一角度,其结果为1302436(6测回),2302434(4测回),3302438(8测回)。试求单位权中误差、加权平均值中误差、一测回观测值的中误差。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1