毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc

上传人:李主任 文档编号:3282735 上传时间:2019-08-07 格式:DOC 页数:39 大小:524.82KB
返回 下载 相关 举报
毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc_第1页
第1页 / 共39页
毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc_第2页
第2页 / 共39页
毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc_第3页
第3页 / 共39页
毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc_第4页
第4页 / 共39页
毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc_第5页
第5页 / 共39页
点击查看更多>>
资源描述

《毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)-基于AT89C51单片机的超声波倒车测距报警系统.doc(39页珍藏版)》请在三一文库上搜索。

1、北京联合大学 毕业设计摘 要随着社会经济的发展交通运输业日益兴旺,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞预警系统势在必行,超声波测距法是最常见的一种距离测距方法,本文介绍的就是利用超声波测距法设计的一种倒车防撞报警系统。论文的内容是基于AT89C51单片机倒车防撞系统的设计,主要是利用超声波的特点和优势,将超声波测距系统和AT89C51单片机结合于一体,设计出一种基于AT89C51单片机的倒车防撞报警系统。该系统采用软、硬件结合的方法,具有模块化和多用化的特点。论文概述了超声

2、波检测的发展及基本原理,阐述了超声波传感器的原理及特性。对于系统的一些主要参数进行了讨论,并且在介绍超声波测距系统功能的基础上,提出了系统的总体构成。通过多种发射接收电路设计方案比较,得出了最佳设计方案,并对系统各个设计单元的原理进行了介绍。对组成各系统电路的芯片进行了介绍,并阐述了它们的工作原理。论文介绍了系统的软件结构,通过编程来实现系统功能。最后,通过对系统的误差分析,给出了系统的改进方案。关键字:单片机 超声波 AT89C51 AbstractIs day by day prosperous along with the social economy development trans

3、portation shipping industry, the automobile quantity climbs in the first mate. Traffic congestion condition also day by day serious, the collision event occurred repeatedly, has caused the inevitable person casualties and the economic loss, in view of this kind of situation, designed one kind to res

4、pond quickly, the reliability was high also a more economical automobile guards against hits the early warning system imperative, the ultrasonic wave range finding was the most common one distance range finder method, this article introduces is guards against using the ultrasonic wave range finding

5、design one kind of back-draft hits the alarm system.The paper is based on the contents of the AT89C51 monolithic integrated circuit reverse collision avoidance system design, mainly using ultrasound features and advantages, ultrasound ranging system and the integration with the integration AT89C51 m

6、onolithic integrated circuit, AT89C51 monolithic integrated circuit based on the design of a reverse collision avoidance warning systems. The system used software and hardware integrated approach of a modular and multi-use characteristics. The paper outlines the development and the basic principles

7、of ultrasound tests on the principles and characteristics of ultrasound sensors. Some of the main parameters for the system were discussed, and introducing ultrasonic ranging system functions basis, the overall composition of the system. Through multiple launch reception circuit design comparison, t

8、he best designed programme drawn, and various system design modules principles introduced. On the composition of the system circuit chip introduced and elaborated the principles of their work. Papers introduced system software architecture, through programming to achieve system function. Finally, th

9、rough the analysis of system error, giving the system improvement programme. Key word:monolithic integrated circuit;ultrasonic wave;AT89C51目 录摘 要Abstract引 言1第1章 绪论11.1 超声检测发展综述11.2 论文主要内容和章节安排3第2章 超声波测距原理52.1 超声波传感器介绍52.1.1 超声波传感器特性62.2 超声波检测概述72.2.1 超声探伤82.3 超声测距原理及实现 9第3章 单片机超声波测距系统构想113.1 超声波测距系统

10、总体方案113.2 系统主要参数考虑123.2.1 传感器指向角123.2.2 测距仪的工作频率133.2.3 声速133.2.4 发射脉冲宽度133.2.5 测量盲区14第4章 单片机倒车防撞报警系统各组成单元方案设计154.1 发射接收电路方案设计15 4.1.1 超声波发射电路154.1.2 超声波接收电路154.2 显示报警单元方案设计164.2.1 系统显示电路设计164.2.2 系统报警电路设计174.3 单片机复位电路184.4 时钟电路19 4.5 稳压电源20第5章 系统硬件及软件实现225.1 单片机硬件介绍225.1.1 单片机AT89C51介绍225.1.2 8155芯

11、片介绍245.1.3 74LS244芯片介绍245.1.4 74LS06芯片介绍 255.2 运算放大器265.3 LM567芯片介绍275.4 探头UCM介绍 285.5 系统软件结构 295.5.1 主程序 295.5.2 显示子程序和蜂鸣报警子程序 32第6章 系统误差分析及改进346.1 误差产生原因分析346.1.1 温度对超声声速的影响346.1.2 回波检测对时间测量的影响356.1.3 超声传感器所加脉冲电压对测量范围和精度的影响356.2 针对误差产生原因的系统改进方案35结 论37致 谢38参考文献37附 录3734引 言随着社会经济的发展,交通运输业日益兴旺,汽车的数量在

12、大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失,针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞报警系统势在必行,超声波测距法是最常见的一种距离测距方法,应用于汽车停车的前后左右防撞的近距离,低速状况,以及在汽车倒车防撞报警系统中,超声波作为一种特殊的声波,同样具有声波传输的基本物理特性折射,反射,干涉,衍射,散射。超声波测距即是利用其反射特性,当车辆后退时,超声波距离传感器利用超声波检测车辆后方的障碍物位置,并利用指示灯及蜂鸣器把车辆到障碍物的距离及位置通知驾驶人员,起到安全的作用。 第1章 绪 论1.1 主要任务与目的 本设计基于AT89C

13、51单片机及外围接口通过超声波测距实现倒车防撞系统的设计,主要利用超声波的特点和优势,将超声波测距系统和AT89C51单片机结合于一体,设计出一种基于AT89C51单片机的倒车防撞报警系统。可完成测距、显示、报警等多项功能。1.2 超声波测距的发展及在倒车测距报警系统中的应用 关于超声波的研究起始于1876年,这是人类首次有效产生的高频声波,这些年来,随着超声波技术的不断深入,再加上其具有高精度,无损,非接触等优点,超声波的应用变得越来越普及,多年来已在一些领域的要应用,而用于汽车防装却是近年的事情。这主要原因是传统的超声波传感器不能达到汽车行业的特殊要求。 利用超声波作为定位技术是蝙蝠等一些

14、无目视的生物作为防御以及捕捉猎物的生存手段,也就是有生物体发出而不被人们所听到的超声波,借助空气媒质传播由被呆捕捉的猎物或障碍物反射回来的时间间隔长短与被反射的超声波的强弱判断猎物性质或障碍物位置的方法。由于超声波指向性强,能量消耗缓慢,其传播时间就比较容易检测,并且易于定位发射,方向性好,轻度好控制,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,且方便采用仿真技能利用超声波测距。超声波测距是一种利用声波特性、电子计数、光电开关相结合来实现

15、非接触式距离测量的方法。汽车倒车防撞测距报警器,是我国八五期间需重点开发的重大科研项目之一,也是汽车六大类汽车电子产品中的一种。以往的汽车倒车报警器可分为四大类,即嘀嘀声加闪光,音乐声加闪光,语言声加闪光和倒车至危险距离(如015m)时发出报警声的超声波倒车报警器。本研究综合了第3、4类报警器各功能,并将第4类报警器加以改进、发展,使其不仅可发出警告行人的语言声,而且还能在整个倒车过程中自动测量车尾与最近障碍物之间的距离,并用数字显示出来,在倒车至极限安全距离(如016m)时,会发出急促的警告声,提醒驾驶员注意刹车。另外当蓄电池电压过低时,还会发出声光警告,提醒驾驶员及时充电,以保证仪器及汽车

16、正常工作等。 2 单片机超声波倒车防撞报警系统的构想本设计是基于51单片机的超声波倒车测距报警系统设计,系统可分为软件部分和硬件部分两大部分。在软件部分主要实现超声波的发射接受计算距离及对数码管显示、蜂鸣报警器的控制。硬件部分主要分为超声波发射接收、数码管显示等6大模块。2.1超声波测距倒车防撞报警系统的总体方案系统的设计及器件的选择也正是在这个基础上进行的,系统结构如图2-1 所示。LED显示AT89C51信号放大电路超声波发射探头按键系统前置放大电路超声波接收探头带通滤波整形电路稳压电源蜂鸣器图 2-1 超声波测距硬件电路图电子市场上常见的超声探头是收发分体式,一般频率为 40KHz。如果

17、需要更高频率的超声探头,比如几百赫兹或者几兆赫兹的频率,就需要到专业经营超声产品的厂商去购买或者定制。鉴于有限的条件,拟选用的探头是 40KHz 的超声传感器,有一支接收传感器 SZW-R40-10P和一支发射传感器SZW-S40-12M,其特性参数如表 3.1所示。表3.1传感器特性参数发射电路通常有调谐式和非调谐式。在调谐式电路中有调谐线圈(有时装在探头内),谐振频率由调谐电路的电感、电容决定,发射出的超声脉冲频带较窄。在非调谐式电路中没有调谐元件,发射出的超声频率主要由压电晶片的固有参数决定,频带较宽。为了将一定频率、幅度的交流电压加到发射传感器的两端,使其振动发出超声。电路频率的选择应

18、该满足发射传感器的固有频率 40KHz,这样才能使其工作在谐振频率,达到最优的特性。发射电压从理论上说是越高越好,因为对同一支发射传感器而言,电压越高,发射的超声功率就越大,这样能够在接收传感器上接收的回波功率就比较大,对于接收电路的设计就相对简单一些。但是,每一支实际的发射传感器有其工作电压的极限值,即当工作电压超过了这个极限值之后,会对传感器的内部电路造成不可回复的损害。因此,工作电压不能超过这个极限值。同时,发射电路中的阻尼电阻决定了电路的阻尼情况。通常采用改变阻尼电阻的方法来改变发射强度。电阻大时阻尼小,发射强度大,仪器分辨率低,适宜于探测厚度大,对分辨力要求不高的试件。电阻小时阻尼大

19、,分辨率高,在探测近表面缺陷时或对分辨力有较高要求时应予采用。发射部分的点脉冲电压很高,但是由障碍物回波引起的压电晶片产生的射频电压不过几十毫伏,要对这样小的信号进行处理就必须放大到一定的幅度。接收部分就是由三级放大电路,检波电路及门限判别电路构成的,其中包括杂波抑制电路。最终达到对回波进行放大检测,产生一个单片机能够识别的中断信号作为回波到达的标志。但是由于超声传感器固有特性,即盲区的存在,对于回波的接收和处理造成了相当程度的影响。2.2系统主要参数考虑系统的主要参数有传感器的指向角、测距的工作频率、声速、脉冲宽度、测量盲区等,下面做介绍并阐述。2.2.1 测距仪的工作频率由文献5知,空气中

20、超声波的衰减系数为=as=Af2+Bf4。所以,空气中超声波的衰减对频率很敏感,要求合理选择超声波频率,一般在 40KHz 左右。太高频率的超声波在空气中是无法传播开去的。传感器的工作频率是测距系统的主要技术参数,它直接影响超声波的扩散和吸收损失,障碍物反射损失,背景噪声,并直接决定传感器的尺寸。工作频率的确定主要基于以下几点考虑:(1) 如果测距的能力要求很大,声波传播损失就相对增加,由于介质对声波的吸收与声波频率的平方成正比,为减小声波的传播损失,就必须降低工作频率。(2) 工作频率越高,对相同尺寸的换能器来说,传感器的方向性越尖锐,测量障碍物复杂表面越准,而且波长短,尺寸分辨率高,“细节

21、”容易辨识清楚,因此从测量复杂障碍物表面和测量精度来看,工作频率要求提高。(3) 从传感器设计角度看,工作频率越低,传感器尺寸就越大,制造和安装就越困难。综上所述,由于本测距仪最大测量量程不大,因而选择测距仪工作频率在 40KHz,定为 44KHz。这样传感器方向性尖锐,且避开了噪声,提高了信噪比;虽然传播损失相对低频有所增加,但不会给发射和接收带来困难。2.2.2 声速由公式(2-1),声速的精确程度线性的决定了测距系统的测量精度。传播介质中声波的传播速度随温度,杂质含量,和介质压力的变化而变化。声速随温度变化公式为V=331.40.607T(m/s) (3-2) 式中,T 是温度。由于该测

22、距系统用于室内测量,且量程也不大,温度可以看作定值。在常温下,声音在空气中的传播速度可依据上式计算出为 340 m/s。2.2.3发射脉冲宽度发射脉冲宽度决定了测距仪的测量盲区,也影响测量精度,同时与信号的发射能量有关。根据资料,减小发射脉冲宽度,可以提高测量精度,减小测量盲区,但同时也减小了发射能量,对接收回波不利。但是根据实际的经验,过宽的脉冲宽度会增加测量盲区,对接收回波及比较电路都造成一定困难。在具体设计中,比较了 24s (1 个 40KHz 脉冲方波),120s( 5 个 40KHz 脉冲方波),240s (10 个 40KHz 脉冲方波),720s( 30 个 40KHz 脉冲方

23、波)的发射脉冲宽度作为发射信号后的接收信号,最终选用 120s (5 个 40KHz 脉冲方波)的发射脉冲宽度。此时,从接收回波信号幅度和测量盲区两个方面来衡量比较适中。2.2.4测量盲区在以传感器脉冲反射方式工作的情况下,电压很高的发射电脉冲在激励传感器的同时也进入接收部分。此时,在短时间内放大器的放大倍数会降低,甚至没有放大作用,这种现象称为阻塞。不同的检测仪阻塞程度不一样。根据阻塞区内的缺陷回波高度对缺陷进行定量评价会使结果偏低,有时甚至不能发现障碍物,这是需要注意的。由于发射声脉冲自身有一定的宽度,加上放大器有阻塞问题,在靠近发射脉冲一段时间范围内,所要求发现的缺陷往往不能被发现,这段

24、距离,称为盲区,具体分析如下:当发射超声波时,发射信号虽然只维持一个极短时间,但停止施加发射信号后,探头上还存在一定余振(由于机械惯性作用)。因此,在一段较长时间内,加在接收放大器输入端的发射信号幅值仍具一定幅值高度,可以达到限幅电路的限幅电平 VM ;另一方面,接收探头上接收到的各种反射信号却远比发射信号小,即使是离探头较近的表面反射回来的信号,也达不到限幅电路的限幅电平。当反射面离探头愈来愈远,接收和发射信号相隔时间愈来愈长,其幅值也愈来愈小。在超声波检测中,接收信号的衰减总是比发射信号余振衰减慢的多。为保证一定的信噪比,接收信号幅值需达到规定的阈值 Vm ,亦即接收信号的幅值必须大于这一

25、阈值才能使接受放大器有输入信号。2.3超声波传感器介绍超声波由于其指向性强、能量消耗缓慢、传播距离较远等优点,而经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如液位、井深、管道长度等场合。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在测控系统的研制上得到了广泛应用。超声传感器是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。目前常用的超声传感器有两大类,即电声型与流体动力型。电声型主要有:1 压电传感器;2 磁致伸

26、缩传感器;3 静电传感器。流体动力型中包括有气体与液体两种类型的哨笛。由于工作频率与应用目的不同,超声传感器的结构形式是多种多样的,并且名称也有不同,例如在超声检测和诊断中习惯上都把超声传感器称作探头,而工业中采用的流体动力型传感器称为“哨”或“笛”。压电传感器属于超声传感器中电声型的一种。探头由压电晶片、楔块、接头等组成,是超声检测中最常用的实现电能和声能相互转换的一种传感器件,是超声波检测装置的重要组成部分。压电材料分为晶体和压电陶瓷两类。属于晶体的如石英,铌酸锂等,属于压电陶瓷的有锆钛酸铅,钛酸钡等。其具有下列的特性:把这种材料置于电场之中,它就产生一定的应变;相反,对这种材料施以外力,

27、则由于产生了应变就会在其内部产生一定方向的电场。所以,只要对这种材料加以交变电场,它就会产生交变的应变,从而产生超声振动。因此,用这种材料可以制成超声传感器。传感器的主要组成部分是压电晶片。当压电晶片受发射电脉冲激励后产生振动,即可发射声脉冲,是逆压电效应。当超声波作用于晶片时,晶片受迫振动引起的形变可转换成相应的电信号,是正压电效应。前者用于超声波的发射,后者即为超声波的接收。超声波传感器一般采用双压电陶瓷晶片制成。这种超声传感器需要的压电材料较少,价格低廉,且非常适用于气体和液体介质中。在压电陶瓷上加有大小和方向不断变化的交流电压时,根据压电效应,就会使压电陶瓷晶片产生机械变形,这种机械变

28、形的大小和方向在一定范围内是与外加电压的大小和方向成正比的。也就是说,在压电陶瓷晶片上加有频率为 f0交流电压,它就会产生同频率的机械振动,这种机械振动推动空气等媒介,便会发出超声波。如果在压电陶瓷晶片上有超声机械波作用,这将会使其产生机械变形,这种机械变形是与超声机械波一致的,机械变形使压电陶瓷晶片产生频率与超声机械波相同的电信号。图2.1压电式超声波传感器结构图压电式超声波发生器实际上是利用压电晶体的谐振来工作的,超声波发生器内部结构如图2.1所示,它有两个压电晶片和一个共振板,当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波

29、。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转化为电信号,这时它就成为超声波传感器。压电陶瓷晶片有一个固定的谐振频率,即中心频率 f0。发射超声波时,加在其上面的交变电压的频率要与它的固有谐振频率一致。这样,超声传感器才有较高的灵敏度。当所用压电材料不变时,改变压电陶瓷晶片的几何尺寸,就可非常方便的改变其固有谐振频率。利用这一特性可制成各种频率的超声传感器。超声波传感器的内部结构由压电陶瓷晶片、锥形辐射喇叭、底座、引线、金属壳及金属网构成,其中,压电陶瓷晶片是传感器的核心,锥形辐射喇叭使发射和接收超声波能量集中,并使传感器有一定的指向角,金属壳可防止外

30、界力量对压电陶瓷晶片及锥形辐射喇叭的损坏。金属网也是起保护作用的,但不影响发射与接收超声波。2.3.1超声波传感器的特性超声波传感器的基本特性有频率特性和指向特性,这里以SZW-S40-12M 发射型超声波传感器为例进行说明。一、频率特性图2.2超声发射传感器频率特性图 2.2是超声波发射传感器的频率特性曲线。其中,f040KHz 为超声发射传感器的中心频率,在 f0处,超声发射传感器所产生的超声机械波最强,也就是说在 f0处所产生的超声声压能级最高。而在 f0两侧,声压能级迅速衰减。因此,超声波发射传感器一定要使用非常接近中心频率 f0的交流电压来激励。另外,超声波接收传感器的频率特性与发射

31、传感器的频率特性类似。曲线在 f0处曲线最尖锐,输出电信号的幅度最大,即在 f0处接收灵敏度最高。因此,超声波接收传感器具有很好的频率选择特性。超声接收传感器的频率特性曲线和输出端外接电阻R 也有很大关系,如果 R 很大,频率特性是尖锐共振的,并且在这个共振频率上灵敏度很高。如果 R 较小,频率特性变得光滑而具有较宽得带宽,同时灵敏度也随之降低。并且最大灵敏度向稍低的频率移动。因此,超声接收传感器应与输入阻抗高的前置放大器配合使用,才能有较高得接收灵敏度。二、指向特性实际的超声波传感器中的压电晶片是一个小圆片,可以把表面上每个点看成一个振荡源,辐射出一个半球面波(子波),这些子波没有指向性。但

32、离开超声传感器的空间某一点的声压是这些子波迭加的结果(衍射),却有指向性。2.4 超声波检测概述超声波是一种频率超过 20kHz 的机械波。超声波作为一种特殊的声波,同样具有声波传输的基本物理特性反射、折射、干涉、衍射、散射。超声波具有方向性集中、振幅小、加速度大等特点,可产生较大力量,并且在不同的媒质介面,超声波的大部分能量会反射。利用超声波检测往往比较迅速,方便,易于做到实时控制,并且在测量精度方面能达到工业实用的要求,主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如:液位、井深、管道长度等场合。超声波在介质(固体、液体、气体)中传播时,利用不同介质的不同声学特性对超声波传播的影响来

33、探查物体和进行测量的技术称为超声检测。当超声波以脉冲形式在介质中传播时,利用反射这一性质,在金属,非金属中用来探测缺陷的位置和性质,从而对钢板、锻件、焊缝、混凝土、人造石磨等进行探伤检验;在水中,根据反射波可以探测潜水艇和鱼群,测量海底深度以及探查海底底层等;在人体中则可以协助临床诊断疾病(如肝脓肿、肿瘤、胆结石等)和探测胎儿等。利用超声连续波的共振性质,可以测量高压容器,锅炉,轮船甲板等的厚度或腐蚀程度,也可制成机械滤波器。利用超声波的衰减特性,可以研究或测量材料的物理性质。当超声波射到运动体时,利用多普勒效应,可以测量流速流量,探测心脏血管搏动等。若将超声波作为载波传送某些信号,则可制成水

34、中电话,水中遥测仪等,以进行水中通信。利用超声波在固体,液体中传播的速度远小于电磁波这一特性,可制成超声延迟线和存储装置以及进行电视制式的转换。还可利用超声波检漏、测量液位、粘度、硬度和温度等。除此之外、声发射、声成像技术(包括声全息成像技术)的发展更大大丰富了超声检测的内容。超声波测量在国防、航空航天、电力、石化、机械、材料等众多领域具有广泛的作用,它不但可以保证产品质量、保障安全,还可起到节约能源、降低成本的作用。超声波与光波、电磁波、射线等检测相比,其最大特点是穿透力强,几乎可以在任何物体中传播,了解被测物体内部情况。超声检测设备还具有结构简单,成本低廉的优点,有利于工程实际使用。近十几

35、年来,由于微机技术、现代电子技术、信号处理技术以及超声波产生和接收新技术的发展,突破了常规超声检测的限制,进一步开拓了其适用范围。2.5 超声波测距的原理及实现超声波脉冲法测距原理: 声波在其传播介质中被定义为纵波。当声波受到尺寸大于其波长的目标物体阻挡时就会发生反射,反射波称为回声。假如声波在介质中传播的速度是已知的,而且声波从声源到达目标然后返回声源的时间可以测量得到,那么就可以计算出从声波到目标的距离。这就是本系统的测量原理。这里声波传播的介质为空气,采用不可见的超声波。 假设室温下声波在空气中的传播速度是335.5m/s,测量得到的声波从声源到达目标然后返回声源的时间是t秒,则距离d可

36、以由下列公式计算: 因为声波经过的距离是声源与目标之间距离的两倍,声源与目标之间的距离应该是d/2。 超声波测距模组信号: 图 2.3为超声波模组上NE5532的7引脚处和模组的J4的40KHz_SEND引脚处测量得到的波形图,而传感器距目标面的距离为2米。图2.3超声波信号测量图 图中的波形为示波器抓拍图,1通道为NE5532的7引脚处测得波形,即上方的波形;通道2为J4的40KHz_SEND引脚处测得波形。 图中可见,接收回路中测得的超声波信号共有两个波束,第一个波束为余波信号,即超声波接收头。发射头发射信号(一组40KHz的脉冲)后,马上就接收到了超声波信号,并持续一段时间。另一个波束为

37、有效信号,即经过被测物表面反射的回波信号。 超声波测距时,需要测的是开始发射到接收到信号的时间差,由上图中就可看出,需要检测的有效信号为反射物反射的回波信号,故要尽量避免检测到余波信号,这也是超声波检测中存在最小测量盲区的主要原因。 软件控制脉冲发射、检测回波信号: 由控制模组发生40KHz的脉冲信号,每次测量发射的脉冲数至少要12个完整的40KHz脉冲。同时发射信号前打开计数器,进行计时;等计时到达一定值后再开启检测回波信号,以避免余波信号的干扰。 采用外部中断对回波信号进行检测(回波信号送到单片机的为一序列方波脉冲)。接收到回波信号后,马上读取计数器中的数值,此数据即为需要测量的时间差数据

38、。为减小测量数据的误差,程序中对测距数据的处理方法是:每进行一次测距,测量10次,即取得10组数据,经过处理后得到这一次测距值。第3章 单片机倒车防撞报警系统各组成单元设计该超声波测距系统由超声波发射与接收电路、单片机硬件接口电路、显示报警电路组成,下面主要通过各个模块的各种方案比较,确定设计的最终方案。该系统的核心部分采用性能较好的AT89C51单片机。3.1发射与接收电路的设计方案超声波发射与接收电路是整个系统的重要部分,因此确定一种好的设计方案关系整个系统的精确性和安全可靠性。 3.11 超声波的发射电路 超声波发射电路一般由超声波反射器T、40kHz的超音频振荡器、驱动(或激励)电路等

39、组成,本设计利用门电路产生40kHz的超声波,组成的超声波发射电路见图3.11。图3.11 图中,与非门74LS00和LM386组成超声波发射电路,用74LS00构成多谐振荡器,通过调节20k的电位器,可产生超声波发射的40kHz信号,其中U3A为驱动器,电路振荡频率f1/2.2RC,单片机的控制信号由U2A输入。为增大超声波的发射频率,本设计利用了单运放LM386,发射距离可达4m。 3.12 超声波的接收电路 超声波接收电路如图3.12所示。接收头采用与发射头配对的超声波接收器R,将超声波调制脉冲变为交变电压信号。为了进行信号的整形,在设计中的CMOS电平的6非门芯片CD4069,可以减少

40、电路的复杂程度,提高电路的带负载能力。整形后的信号由C1耦合给带有锁定环的音频译码集成块LM567的输入端3脚,当输入信号的幅度落在其中心频率上时,LM567的逻辑输出端8脚由高电平跃变为低电平。图3.12 3.13 DS18B20温度补偿电路 根据上文中式(2)可知,温度对声速的影响较大,若不进行补偿,将会带来测量误差,为了提高系统的测量精度,设计了温度补偿电路。系统采用数字温度传感器DS18B20来采集温度,DS18B20是美国DALLAS公司生产的1-wire总线串行数字温度传感器,它具有微型化、低功耗、抗干扰能力强、易于与微处理器接口等优点,适合于各种温度测控系统。它的测量温度范围为-

41、55+125,精度可达0.0675,最大转换时间为200ms。 数字式温度传感器和模拟温度传感器最大的区别是:将温度信号直接转化成数字信号,然后通过串行通信的方式输出。因此掌握DS18B20的通信协议是使用该器件的关键。该协议定义了几种信号类型:复位脉冲、应答脉冲时隙;写“0”、读“1”时隙,读“0”、读“1”时隙。初始化后,传感器输出两个字节的温度,进行数据处理后得到实际温度的值,利用式(2)可计算补偿声速。3.2 显示报警单元方案设计显示报警单元是经过超声波发射接收电路及单片机AT89C51处理后把信号转化为人为可以知觉的数字显示和报警响应,以进一步避免事故发生。显示报警电路由显示和报警两

42、部分电路组成,主要实现在出现紧急情况下的显示报警功能,以此提醒驾驶员。3.2.1系统显示电路设计显示器是一个典型的输出设备,而且其应用是极为广泛的,几乎所有的电子产品都要使用显示器,其差别仅在于显示器的结构类型不同而已。最简单的显示器可以使LED 发光二极管,给出一个简单的开关量信息,而复杂的较完整的显示器应该是 CRT监视器或者屏幕较大的 LCD 液晶屏。综合课题的实际要求以及考虑单片机的接口资源,采用串行方式显示的 LED 驱动输出设备。由于全程显示的距离范围在 4 米之内,用 3 个 LED 数码管表示距离的 cm数值。在单片机应用系统中,发光二极管LED显示器常用两种驱动方式:静态显示

43、驱动和动态显示驱动。所谓静态显示驱动,就是给要点亮的LED通以恒定的电流,即每一位LED显示器各引脚都要占用单独的具有锁存功能的I/O接口。单片机只需要把要显示的字形段码发送到接口电路并保持不变即可,如果要显示新的数据,再发送新的字形段码。因此,使用这种方法单片机中CPU开销小,但这种驱动方法需要寄存器、译码器等硬件设备。当需要显示的位数增加时,所需的器件和连线也相应增加,成本也增加。而所谓动态显示驱动就是给欲点亮的LED通以脉冲电流,即采用分时的方法,轮流控制各个显示器的COM端,使各个显示器轮流点亮,这时LED的亮度就是通断的平均亮度。考虑各种因素,本设计选用动态驱动显示。本设计选用815

44、5芯片作为单片机应用系统扩展的I/O口。8155的PA口作为LED的字形输出口,为提高显示亮度,采用8路反相驱动器74LS244驱动;PC口作为LED的位选控制口,采用共阳极的LED显示器,由于8段全亮时位控线的驱动电流较大,采用6路反相驱动器74LS06以提高驱动能力。图3.13系统显示电路3.2.2系统报警电路设计系统报警电路由一个运算放大器、一个发光二极管和一个喇叭组成。R25的阻值为1K,R26的阻值为10K。对于二级运算放大,都采用F007芯片.两级放大电路均是负反馈接法,即反相比例运算电路.而反相比例运算电路中,输入信号从反相输入端输入,同相输入端接地.根据“虚短”和“虚断”的特点

45、,即u_=u+,i_=i+=0.可得u+=0.而所谓“虚短”是由于理想集成运放Au0。所以可以认为两个输入端之间的差模电压近似为零,即Uid=u_=u+0.即u_=u+,而u0具有一定值。由于两个输入端间的电压为零,而又不是短路,故称为“虚短”。而“虚断”是由于理想集成运放的输入电阻Rid,故可以认为输入端不取电流,即i_=i+0.这样,输入端相当于断路,而又不是断开,称为“虚断”。而电路中,反相输入端与地端等电位,但又不是真正接地,这种情况称为“虚地”。所以iI=,iF=,因为i_=0,iI=if,则可得u0=-uI.故可将信号进行放大。图3.14 系统报警电路当单片机AT89C51通过P1

46、.0,P1.1,P1.2三个I/O口,发射出超声波的信号,即输出一个高电平给这三个I/O口,大约5V的电压,同时单片机计数器T0开始计时。则信号经过三极管T1,T2,T3进行放大。使电流达到T40-16的工作电流,从而发射出超声波。当T40-16发射出去的超声波遇到障碍物时会被反射回来,这时接收器R40-16便会将反射回来的超声波接收,并转换成电信号,经过运算放大器的两极放大,将信号送给LM567的输入端,当LM567的输入端电流大于25mA时,其8号输出引脚会产生一个信号,使得单片机AT89C51产生一个中断。这样,计数器便停止计数。单片机把计得的时间差进行运算,根据S=170*t这个公式来

47、计算车与障碍物的距离,并把运算结果以十进制的方式送到七段LED显示电路去显示。如果距离小于0.5m,则单片机AT89C51便给P1.5口一个信号,使得报警电路工作,实现报警。3、3单片机复位电路在单片机应用系统工作时,除了进入系统正常的初始化之外,当由于程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需按复位键以重新启动。所以,系统的复位电路必须准确、可靠地工作。单片机的复位都是靠外部电路实现的,在时钟电路工作后,只要在单片机的RST引脚上出现24个时钟振荡脉冲以上的高电平,单片机便实现初始化状态复位。为了保证应用系统可靠地复位,在设计复位电路时,通常使RST保持高电平。只要RST保持高电平,则单片机就循环复位。单片机复位电路通常采用以下几种方式:a、上电自动复位在通电瞬间,由于RC电路充电过程中,RST端出现正脉冲,从而使单片机复位。 图3.15上电复位电路b、按键电平复位

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 研究报告 > 信息产业


经营许可证编号:宁ICP备18001539号-1