毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc

上传人:哈尼dd 文档编号:3283804 上传时间:2019-08-08 格式:DOC 页数:66 大小:867.82KB
返回 下载 相关 举报
毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc_第1页
第1页 / 共66页
毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc_第2页
第2页 / 共66页
毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc_第3页
第3页 / 共66页
毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc_第4页
第4页 / 共66页
毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)-基于单片机的多参数测试仪硬件开发.doc(66页珍藏版)》请在三一文库上搜索。

1、 陕西理工学院毕业设计目 录引 言11 绪 论21.1测试技术的现状与发展方向21.2通用测试技术基础的关键技术31.2单片机技术简介61.2.1单片机技术的现状与发展趋势91.2.2单片机技术的应用112方案论证112.1方案一122.2方案二122.3方案三122.4方案的选择123硬件设计123.1传感器的选择123.1.1电涡流式传感器原理与特性133.1.2电涡流式传感器测量方法153.2放大器设计163.2.1用741集成运放设计放大电路163.2.2用OP07设计放大电路203.3抗混叠滤波213.3.1硬件滤213.3.2软件滤波283.4取样保持电路323.5 A/D转换器3

2、33.5.1 A/D转换的一般步骤、取样定理和选择要点343.5.2 A/D转换原理373.5.3 ADC0809模数转换383.5.4 ADC0809的应用423.6 8051单片机介绍473.6.1 AT89C51主要特性及引脚说明483.6.2单片机的硬件说明513.7 74LS373锁存器533.8 74LS273触发器564应用软件574.1 Proteus调试软件简介574.2 Keil软件介绍59致 谢62参考文献63附录A:硬件接线图64附录B:英文资料与翻译65引 言 此次设计的题目是基于单片机的多参数测试仪硬件开发。 多参数测试仪器是在2002年9月通过省级技术鉴定的“回转

3、振动钻研制”的基础上进行的延伸研究,在回转振动钻研制过程中,关于主轴复合振动参数的在线测试一直是个难点问题,虽然采用间接测量能够测得主轴空载振频和振幅,而对于该设备在工作过程中复合振动参数的在线测试一直没能很好解决。而本次设计就是为回转振动钻在线测试问题。本次设计主要采用单片机做处理器以及控制器,通过单片机来控制整个测试过程。对被测物体的测量、运算、输出,整个过程都是由单片机进行控制。单片机全称为单片微型计算机(Single Chip Microcomputer)因为单片机主要用于控制系统中,所以又称微控制器或嵌入式控制器。它具有嵌入式应用系统所要求的体系结构、指令系统、总线方式、管理模式等。

4、它把计算机的基本部件微型化并集成到一块芯片上,通常片内都含有中央处理部件(CPU)、数据存储器(RAM)、程序存储器(ROM、EPROM、Flash ROM)、定时器/计时器和各种输入/输出(I/O)接口,如RS-232串行通信口、中断控制、系统时钟及系统总线等。它具有体积小、使用灵活方便、成本低、易于产品化、抗干扰能力强、可在各种恶劣的环境下可靠地工作等特点。特别是它强大的面向控制的能力,使它在工业控制、智能仪表、外设控制、家用电器、机器人、军事装置等方面得到了广泛的应用,整个工业设备和工艺将进行一次以普及应用微机为特征的技术改造。我们知道,每种现代自动化过程,都包括有三种主要功能块:执行器

5、、计算机(或微处理器)机传感器。传感器时时检测“对象”的状态及其相应的物理量,并及时亏送给计算机;计算机相当于人的大脑,经过运算、分析、判断,根据“对象”状态偏离设定值的方向与程度,对执行器下达修正动作的命令;执行器相当于人的手脚,按大脑的命令对“对象”进行操作。传感器 设定值对象执行器计算机 图1 自动化(控制)系统框图本次设计就是用单片机来控制传感器对被测物在空载状态下多个参数进行测量,再经过单片机运算后,由LED数码管显示所需测量的值。本次毕业设计要求设计多参数测量仪器,其参数要求为:实现在线测量采样次数大于3(次/分钟);测试频率小于500Hz;测试精度为1.0%。满足这些要求,也就是

6、单片机和传感器要满足这些要求要求,对单片机及传感器选择很重要。1 绪 论1.1测试技术的现状与发展方向 现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复.现代精密测量技术一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。在现代工业制造技术和科学研究中,测量仪器具有精密化、

7、集成化、智能化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复杂零件尺寸、形状和相互位置进行高准确度测量。发展高速坐标测量机是现代工业生产的要求。同时,作为下世纪的重点发展目标,各在微/纳米测量技术领域开展了广泛的应用研究。 1)坐标测量机的最新发展 三坐标测量机作为几何尺寸数字化检测设备在机械制造领域得到推广使用,而科学研究和机械制造行业的技术进步又对CMM提出更多新的要求,作为测量机的制造者就需要不断将新技术应用于自己的产品以满足生产实际的需要。1.1 误差自补偿技术德国Carl Zeiss公司最近开发的CNC小型坐标测量机采用热不灵敏陶瓷技术

8、(Thermally insensitive ceramic technology),使坐标测量机的测量精度在17.825.6范围不受温度变化的影响。国内自行开发的数控测量机软件系统PMIS包括多项系统误差补偿、系统数识别和优化技术。1.2丰富的软件技术Carl Zeiss公司开发的坐标测量机软件STRATA-UX,其测量数据可以从CMM直接传送到随机配备的统计软件中去,对测量系统给出的检验数据进行实时分析与管理,根据要求对其进行评估。依据此数据库,可自动生成各种统计报表,包括X-BAR&R及X_BAR&S图表、频率直方图、运行图、目标图等。美国Brown & Sharp公司的Chameleo

9、n CMM测量系统所配支持软件可提供包括齿轮、板材、凸轮及凸轮轴共计50多个测量模块。日本Mitutoyo公司研制开发了一种图形显示及绘图程序,用于辅助操作者进行实际值与要求测量值之间的比较,具有多种输出方式。1.3系统集成应用技术各坐标测量机制造商独立开发的不同软件系统往往互不相容,也因知识产权的问题,些工程软件是封闭的。系统集成技术主要解决不同软件包之间的通信协议和软件翻译接口问题。利用系统集成技术可以把CAD、CAM及CAT以在线工作方式集成在一起,形成数学实物仿形制造系统,大大缩短了模具制造及产品仿制生产周期。1.4 非接触测量基于三角测量原理的非接触激光光学探头应用于CMM上代替接触

10、式探头。通过探头的扫描可以准确获得表面粗糙度信息,进行表面轮廓的三维立体测量及用于模具特征线的识别。该方法克服了接触测量的局限性。将激光双三角测量法应用于1700mm1200mm200mm测量范围内,对复杂曲面轮廓进行测量,其精度可高于1m。英国IMS公司生产的IMP型坐标测量机可以配用其他厂商提供的接触式或非接触式探头。2) 微/纳米级精密测量技术科学技术向微小领域发展,由毫米级、微米级继而涉足到纳米级,即微/纳米技术。微/纳米技术研究和探测物质结构的功能尺寸与分辨能力达到微米至纳米级尺度,使类在改造自然方面深入到原子、分子级的纳米层次。纳米级加工技术可分为加工精度和加工尺度两方面。加工精度

11、由本世纪初的最高精度微米级发展到现有的几个纳米数量级。金刚石车床加工的超精密衍射光栅精度已达1nm,实验室已经可以制作10nm以下的线、柱、槽。微/纳米技术的发展,离不开微米级和纳米级的测量技术与设备。具有微米及亚微米测量精度的几何量与表面形貌测量技术已经比较成熟,如HP5528双频激光干涉测量系统(精度10nm)、具有1nm精度的光学触针式轮廓扫描系统等。因为扫描隧道显微镜(STM,Scanning Tunning Microscope)、扫描探针显微镜(SPM,Scanning Probe Microscope)和原子力显微镜(AFM,Atomic Force Microscope)用来直

12、接观测原子尺度结构的实现,使得进行原子级的操作、装配和改形等加工处理成为近几年来的前沿技术。3)图像识别测量技术随着近代科学技术的发展,几何尺寸与形位测量已从简单的一维、二维坐标或形体发展到复杂的三维物体测量,从宏观物体发展到微观领域。被测物体图像中即包含有丰富的信息,为此,正确地进行图像识别测量已经成为测量技术中的重要课题。图像识别测量过程包括:(1)图像信息的获取;(2)图像信息的加工处理,特征提取;(3)判断分类。计算机及相关计算技术完成信息的加工处理及判断分类,这些涉及到各种不同的识别模型及数理统计知识。图像测量系统一般由以下结构组成。以机械系统为基础,线阵、面阵电荷耦合器件CCD或全

13、息照相系统构成摄像系统;信息的转换由视频处理器件完成电荷信号到数字信号的转换;计算机及计算技术实现信息的处理和显示;反馈系统包括温度误差补偿,摄像系统的自动调焦等功能;载物工作台具有三坐标或多坐标自由度,可以精确控制微位移。1.2通用测试技术基础的关键技术1) 总线接口技术总线是所有测试系统和故障诊断系统的基础和关键技术,是系统标准化、模块化、组合化的根本条件,国内外都是依据总线系统来组建各类测试系统,以确保硬件、软件、系统级的兼容性、互换性和重构功能,研究和开发总线系统是设计、研制开放式体系结构的核心任务,也是测试系统技术研究的关键技术。采用总线结构设计的系统,具有简化系统设计、可靠性高、维

14、护性好、产品易于升级换代,便于组织生产工艺和成本低,真正能变串行生产为并行生产等重要优点。美国军方要建立通用的自动测试系统开放式体系结构,其核心技术就是采用了总线系统结构,总线系统的研究成为测试系统技术研究的关键,在某种程度其技术水平决定了测试系统和故障诊断系统技术的水平。因此,总线技术研究历来是系统研究的核心技术。基于此,我们除认真研制VXI、PXI、Compact PCI,同时认真追踪世界接口技术的发展趋势,现拟开展PCI Express,infiniband等技术研究,为建立未来新型的开放式的测试与故障诊断系统平台打下基础,满足21世纪军事装备要求。2) 软件平台技术软件是组建系统核心技

15、术之一,对于测试软件、TPS可兼容、可移植和重用一直是测试系统的关键技术。拟建立测试软件通用平台,重点研究CORBA、DCOM、COM等中间件语言。这些软件充分利用了现今软件技术发展的最新成果,在基于网络的分布式应用环境下实现应用软件的集成,使得面向对象的软件在分布、异构环境下实现可重用、可移植和互操作。主要原理是引入中间件(Middle ware)作为事务代理,完成客户机(Client)向服务对象(Server)提出的业务请求,实现客户与服务对象的完全分开,客户不需要了解服务对象的实现过程以及具体位置。同时提供软总线机制,使得在任何环境下,采用任何语言开发的软件只要符合接口规范的定义,均能集

16、成到分布式系统中。同时对现有的IVI、Vpp、SQL、ODBC、VRML语言等进行应用研究。3) 专家系统技术由于专家系统具有很好实用性,已被广泛应用于科学、工程制造,尤其是宇航领域得到了广泛应用。美国自由号空间站、欧洲尤里卡平台、哥伦布空间舱,以及日本的吉姆舱都设计了故障诊断专家系统。在新一代载人航天器航天飞机、载人飞船,作为可靠性的重要保障手段之一的故障诊断专家系统得到了广泛应用。“自由号”空间站是美国大型载人航天工程。由于该工程结构庞大,设计复杂以及高可靠和高自主性要求,基于人工智能的故障诊断专家系统是其重要组成部分。NASA投入大量资金用于空间站系统级管理、故障诊断以及分系统级故障诊断

17、专家系统的研制工作,包括诊断推理专家系统。由于故障诊断专家系统以其在实际应用中发挥的作用和取得的效益受到了工程界的普遍重视,专家系统已成为故障诊断技术发展的主流。专家系统是一门综合性很强的学科,开发一个成功的专家系统需要系统设计人员与应用领域中的人类专家密切合作,一般将专家系统的设计人员称为知识工程师(Knowledge Engineer),将参加专家系统开发的人类专家称为领域专家(Domain Expert)。专家系统(Expert System)是一种模拟人类专家解决领域问题的计算机程序系统。专家系统内部含有大量的某个领域的专家水平的知识与经验,能够运用人类专家知识和解决问题的方法进行推理

18、和判断,模拟人类专家的决策过程,来解决该领域的复杂问题。从处理问题性质看,专家系统善于解决那些不确定性、非结构化的问题,主要用于知识处理,而不是数据信息处理。从处理问题的方法看,专家系统则主要依靠知识表达技术、知识推理、知识收集和编码,知识存贮和编排,建立知识库及其管理系统,利用专家知识和经验求解专门问题,而不是数学描述的方法来解决问题。从系统结构看,专家系统则强调知识与推理的分离,因而系统具有很好的灵活性和扩充性。从知识推理能力看,专家系统的工作是在环境模式驱动下的知识推理过程,而不是在固定程序控制下的指令执行过程。从咨询解释能力看,专家系统不仅对用户的提问给出解答,而且能够对答案的推理过程

19、做出解释,提供答案的可信度评估。专家系统能不断对自己的知识进行扩充、完善和提炼。而传统程序都无法做到。专家系统内部包括两个主要部分:知识库和推理机。因为专家系统依赖于推理,它必须能够解释这个过程,所以它的推理过程是可检查的,解释机是复杂专家系统的一个必要部分。由于专家系统具有很多突出优点,如:适应强。它能在任何计算机硬件上使用。专家系统是专家知识的集成,具有高水平的复合性,由几个专家复合起来的知识,其水平可能会超过一个单独的专家,而且复合专家知识在任何时候可同时和持续地解决某一问题。而且持久性好。专家知识是持久的,不会像专家那样会退休,或者死亡,专家系统可以比专家反应更迅速或更有效。某些突发的

20、情况需要响应得比专家更迅速,因此实时的专家系统具有重要应用。专家系统的广泛应用促进了专家系统的发展。一般诊断专家系统开发可以采用高级程序语言、通用人工智能语言、专家系统工具,也叫专家系统外壳来进行。根据需求采用专家系统工具来开发故障诊断专家系统。因为,专家系统工具是一个具有知识表示和推理机的基本框架系统,能保证快速、高质量的组建、开发出故障诊断专家系统。因此,研究和开发专家系统和专家系统工具是组建测试系统和故障诊断系统的基础和关键技术,是测试技术的重要研究内容。4) 虚拟测试技术通过虚拟测试系统,可以使产品历经虚拟设计、虚拟加工、虚拟装配、产品性能虚拟测试和虚拟使用全过程。虚拟测试的结果信息可

21、用于优化、改进虚拟制造技术中有关的设计和过程参数。由于虚拟测试在虚拟制造技术中应用的普遍性,能促进整个虚拟制造技术体系更为完备和工程实用化。因此,开展虚拟制造环境的虚拟测试技术研究和应用具有重要而深远的意义,而计算机技术、虚拟技术和测试技术的发展,以及大量工程实用数据的积累,也使得建立虚拟测试系统具备了现实的可能性。我们开展虚拟测试技术研究,就是用虚拟工程概念解决型号研究中的实际测试问题。通过构造型号虚拟测试环境解决型号研制过程中的测试具体问题,包括参数精度测试,各种物理参数的虚拟产生,过程测试方法的模拟、测试程序的执行检测,对象模拟,以及虚拟模发、模飞等。通过构建军事装备或大型工程的虚拟测试

22、环境,建造一个通用的虚拟测试平台,可以适应各种型号模拟测试试验,对每种型号的测试需求均可在此通用的虚拟测试平台进行试验验证测试,通过虚拟测试验证,修正、完善军事装备的设计、提高研制质量;同时在明确军事装备和大型工程需求情况下通过虚拟测试环境可对需要设计的测试发射控制系统和各类测试分系统体系结构(分布式多总线复合结构或嵌入式单机箱系统)、系统组成、配置、功能模块要求、实时性、传输性、可靠性、维护性均可在通用的虚拟测试平台上完成演示验证,进行完善设计和研制。当前,虚拟测试的研究和应用主要集中在两方面:一是基于虚拟仪器技术的虚拟测试,基于虚拟仪器技术的虚拟测试的核心思想是“软件就是仪器”。其实现途径

23、是在一定硬件基础上,利用计算机和软件及相应算法来替代传统测量仪表和装置,如:信号调理与传输仪表,信号显示记录仪、存储仪表、信号分析与处理仪表,以及有关控制、监控环节。另外,就是基于虚拟现实技术的虚拟测试。基于虚拟现实技术的虚拟测量,则是在虚拟现实环境下,借助多种传感器和必要的硬件装备,根据具体需求,完成有关的测量任务。在虚拟环境下可以设计、构建所需要的虚拟测试系统,进行虚拟测试、虚拟测量操作、测量过程仿真及虚拟制造中的虚拟测试等。在虚拟现实环境下进行虚拟测试,能够将人、测量设备、测量系统模型和测量仿真软件集成于一体,提供良好的人机交互和反馈手段,产生逼真效果。然而目前虚拟现实的硬件设备和工具价

24、格昂贵,VR技术在测量领域的应用应注重技术功能的实现,不必追求高档的、完全的VR环境。上述两类虚拟测试最大区别是:基于虚拟仪器技术(VI)的虚拟测试尽管也被称做“虚拟”,但是,它不可能完全虚拟,其中,被测量对象模拟化不虚,传感器不虚,数采不虚,测量操作不虚,测量结果不虚。而基于虚拟现实技术的虚拟测试,一般强调交互和沉浸,首先要使参与者有“真实”的体验,为了达到这个目的,就必须提供多感知的能力。目前基于虚拟仪器技术的虚拟测试和基于虚拟现实技术的虚拟测试日趋走向集成和融合。虚拟测试可以降低实际测试操作的费用,减少在危险环境中实际操作的危险性,虚拟测试所具有的拟实性、灵活性和低成本,使之成为虚拟现实

25、技术的一个主要应用领域。尤其在虚拟制造中具有重要作用,它贯穿于虚拟设计、虚拟加工制造、虚拟装备以及产品性能检测和使用的全过程,实现虚拟制造各个阶段有机衔接,推进虚拟制造技术的发展和工程化。因此,开展虚拟制造环境的虚拟测试技术研究和应用具有重要而深远的意义,而计算机技术,虚拟技术和测试技术的发展,以及大量工程实用数据的积累,也使得建立虚拟测试系统具备了现实的可能性。卫星测试信息集成系统平台运载、导弹测试信息集成系统平台航空 航天 兵器 船舶测试信息集成系统平台开放式测试信息集成系统 基于信息的综合诊断体系结构测试数字信息支撑平台总线接口 机内测试 人工智能与 虚拟工程与 试验与测试技术平台 技术

26、平台 故障诊断技术 虚拟仪器 软件平台网络技术5) 构建测试技术体系 图1.1.1 测试技术体系1.2单片机技术简介单片机是一种集成电路芯片,采用超大规模技术把具有数据处理能力(如算术运算,逻辑运算、数据传送、中断处理)的微处理器(CPU),随机存取数据存储器(RAM),只读程序存储器(ROM),输入输出电路(I/O口),可能还包括定时计数器,串行通信口(SCI),显示驱动电路(LCD或LED驱动电路),脉宽调制电路(PWM),模拟多路转换器及A/D转换器等电路集成到一块单块芯片上,构成一个最小然而完善的计算机系统。这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。由此来

27、看,单片机有着微处理器所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。然而单片机又不同于单板机,芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果赋予它特定的程序,它便是一个最小的、完整的微型计算机控制系统,它与单板机或个人电脑(PC机)有着本质的区别,单片机的应用属于芯片级应用,需要用户了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某

28、种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源.要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,

29、例如通信产品、家用电器、智能仪器仪表、过程控制和专用控制装置等等,单片机的应用领域越来越广泛。诚然,单片机的应用意义远不限于它的应用范畴或由此带来的经济效益,更重要的是它已从根本上改变了传统的控制方法和设计思想.是控制技术的一次革命,是一座重要的里程碑。单片机发展概述1946年第一台电子计算机诞生至今,只有50年的时间,依靠微电子技术和半导体技术的进步,从电子管晶体管集成电路大规模集成电路,现在一块芯片上完全可以集成几百万甚至上千万只晶体管,使得计算机体积更小,功能更强.特别是近20年时间里,计算机技术获得飞速的发展,计算机在工农业,科研,教育,国防和航空航天领域获得了广泛的应用,计算机技术已

30、经是一个国家现代科技水平的重要标志。单片机诞生于20世纪70年代,象Fairchid公司研制的F8单片微型计算机.所谓单片机是利用大规模集成电路技术把中央处理单元(Center Processing Unit,也即常称的CPU)和数据存储器(RAM)、程序存储器(ROM)及其他I/O通信口集成在一块芯片上,构成一个最小的计算机系统,而现代的单片机则加上了中断单元,定时单元及A/D转换等更复杂、更完善的电路,使得单片机的功能越来越强大,应用更广泛。20世纪70年代,微电子技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功

31、能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,象Farichild公司就属于这一类型,它还需配上外围的其他处理电路方才构成完整的计算系统.类似的单片机还有Zilog公司的Z80微处理器。1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场.它以体积小,功能全,价格低赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑。在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机,象Zilog公司的Z8系列.到了80年代初,单片机已发展到了高性能阶段,象INTEL公司的MCS-

32、51系列,Motorola公司的6801和6802系列,Rokwell公司的6501及6502系列等等,此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机。80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化,大多集成了CPU、RAM、ROM、数目繁多的I/O接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个全新阶段,应用领域更广泛,许多家用电器均走向利用单片机控制的智能化发展道路。1982年

33、以后,16位单片机问世,代表产品是INTEL公司的MCS-96系列,16位单片机比起8位机,数据宽度增加了一倍,实时处理能力更强,主频更高,集成度达到了12万只晶体管,RAM增加到了232字节,ROM则达到了8kB,并且有8个中断源,同时配置了多路的A/D转换通道,高速的I/O处理单元,适用于更复杂的控制系统九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户,使人们从INTEL的111条复杂指令集中走出来.

34、PIC单片机获得了快速的发展,在业界中占有一席之地。随后的事情,熟悉单片机的人士都比较清楚了,更多的单片机种蜂拥而至,MOTOROLA公司相继发布了MC68HC系列单片机,日本的几个著名公司都研制出了性能更强的产品,但日本的单片机一般均用于专用系统控制,而不象INTEL等公司投放到市场形成通用单片机.例如NEC公司生产的uCOM87系列单片机,其代表作uPC7811是一种性能相当优异的单片机.MOTOROLA公司的MC68HC05系列其高速低价等特点赢得了不少用户。Zilog公司的Z8系列产品代表作是Z8671,内含BASIC Debug解释程序,极大地方便用户.而美国国半的COP800系列单

35、片机则采用先进的哈佛结构.ATMEL公司则把单片机技术与先进的Flash存储技术完美地结合起来,发布了性能相当优秀的AT89系列单片机.包括中国的台湾HOLTEK和WINBOND等公司也纷纷加入了单片机发展行列,凭着他们廉价的优势,分享一杯美羹。1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。此期间,单片机园地里,单片机品种异彩纷呈,争奇斗艳.有8位、16位甚至32位机,但8位单片机仍以它的价格低廉、品种齐全、应用软件丰富、支持环境充分、开发方便等特点而占着主导地位.而INTEL公司凭着他们雄厚的技术,性

36、能优秀的机型和良好的基础,目前仍是单片机的主流产品.只不过是九十年代中期,INTEL公司忙着开发他们个人电脑微处理器,已没有足够的精力继续发展自己创导的单片机技术,而由PHILIPS等公司继续发展C51系列单片机. 纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:1) 低功耗CMOS化MCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺).象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺).CMO

37、S虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合.所以这种工艺将是今后一段时期单片机发展的主要途径。2)微型单片化现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大.甚至单片机厂商还可以根据用户的要求量

38、身定做,制造出具有自己特色的单片机芯片。此外,现在的产品普遍要求体积小、重量轻,这就要求单片机除了功能强和功耗低外,还要求其体积要小.现在的许多单片机都具有多种封装形式,其中SMD(表面封装)越来越受欢迎,使得由单片机构成的系统正朝微型化方向发展。3)主流与多品种共存现在虽然单片机的品种繁多,各具特色,但仍以80C51为核心的单片机占主流,兼容其结构和指令系统的有PHILIPS公司的产品,ATMEL公司的产品和中国台湾的Winbond系列单片机.所以C8051为核心的单片机占据了半壁江山.而Microchip公司的PIC精简指令集(RISC)也有着强劲的发展势头,中国台湾的HOLTEK公司近年

39、的单片机产量与日俱增,与其低价质优的优势,占据一定的市场分额.此外还有MOTOROLA公司的产品,日本几大公司的专用单片机.在一定的时期内,这种情形将得以延续,将不存在某个单片机一统天下的垄断局面,走的是依存互补,相辅相成、共同发展的道路.1.2.1单片机技术的现状与发展趋势 科技的进步需要技术不断的提升。一块大而复杂的模拟电路花费了工程师们巨大的精力,繁多的元器件增加了劳动的成本。而现在,只需要一块几厘米见方的单片机,写入简单 的程序,就可以使以前的电路简单很多。单片机技术的出现,不管在开发或是工作上,都我们带来了意想不到的惊喜。单片机发展概述 1946年第一台电子计算机诞生至今,只有50年

40、的时间,依靠微电子技术和半导体技术的进步,从电子管-晶体管-集成电路-大规模集成电路,现在一块芯片上完全可以集成几百万甚至上千万只晶体管,使得计算机体积更小,功能更强。特别是近20年时间里,计算机技术获得飞速的发展,计算机在工农业,科研,教育,国防和航空航天领域获得了广泛的应用,计算机技术已经是一个国家现代科技水平的重要标志。单片机诞生于20世纪70年代,像Fairchid公司研制的F8单片微型计算机。所谓单片机是利用大规模集成电路技术把中央处理单元(Center Processing Unit,也即常称的CPU)和数据存储器(RAM)、程序存储器(ROM)及其他I/O通信口集成在一块芯片上,

41、构成一个最小的计算机系统,而现代的单片机则加上了中断单元,定时单元及A/D转换等更复杂、更完善的电路,使得单片机的功能越来越强大,应用更广泛。20世纪70年代,微电子技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,像Farichild公司就属于这一类型,它还需配上外围的其他处理电路方才构成完整的计算系统。类似的单片机还有Zilog公司的Z80微处理器。1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计

42、算机,并推向市场。它以体积小,功能全,价格低,赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑。在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机,像Zilog公司的Z8系列。到了80年代初,单片机已发展到了高性能阶段,像INTEL公司的MCS-51系列,Motorola公司的6801和6802系列,Rokwell公司的6501及6502系列等等,此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机。80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化

43、,大多集成了CPU、RAM、ROM、数目繁多的I/O接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个全新阶段,应用领域更广泛,许多家用电器均走向利用单片机控制的智能化发展道路。1982年以后,16位单片机问世,代表产品是INTEL公司的MCS-96系列,16位单片机比起8位机,数据宽度增加了一倍,实时处理能力更强,主频更高,集成度达到了12万只晶体管,RAM增加到了232字节,ROM则达到了8kB,并且有8个中断源,同时配置了多路的A/D转换通道,高速的I/O处理单元,适用于更复杂的控制

44、系统。九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户,使人们从INTEL的111条复杂指令集中走出来。PIC单片机获得了快速的发展,在业界中占有一席之地。随后,更多的单片机种蜂拥而至,MOTOROLA公司相继发布了MC68HC系列单片机,日本的几个著名公司都研制出了性能更强的产品,但日本的单片机一般均用于专用系统控制,而不像INTEL等公司投放到市场形成通用单片机。例如NEC公司生产的uCOM87系列单

45、片机,其代表作uPC7811是一种性能相当优异的单片机。MOTOROLA公司的MC68HC05系列其高速低价等特点赢得了不少用户。Zilog公司的Z8系列产品代表作是Z8671,内含BASIC Debug解释程序,极大地方便用户。而美国过半的COP800系列单片机则采用先进的哈佛结构。ATMEL公司则把单片机技术与先进的Flash存储技术完美地结合起来,发布了性能相当优秀的AT89系列单片机。包括中国的台湾HOLTEK和WINBOND等公司也纷纷加入了单片机发展行列,凭着他们廉价的优势,分享一杯美羹。1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放

46、市场,成为单片机发展史上又一个重要的里程碑此期间,单片机园地里,单片机品种异彩纷呈,争奇斗艳。有8位、16位甚至32位机,但8位单片机仍以它的价格低廉、品种齐全、应用软件丰富、支持环境充分、开发方便等特点而占着主导地位。而INTEL公司凭着他们雄厚的技术,性能优秀的机型和良好的基础,目前仍是单片机的主流产品。只不过是九十年代中期,INTEL公司忙着开发他们个人电脑微处理器,已没有足够的精力继续发展自己创导的单片机技术,而由PHILIPS等公司继续发展C51系列单片机。单片机的发展趋势1制作工艺CMOS化(全盘CMOS化)出于对低功耗的普遍要求,目前各大厂商推出的各类单片机产品都采用了CHMOS

47、工艺。80C51系列单片机采用两种半导体工艺生产。一种是HMOS工艺,即高密度短沟道MOS工艺。另外一种是CHMOS工艺,即互补金属氧化物的HMOS工艺。CHMOS是CMOS和HMOS的结合,除保持了HMOS的高速度和高密度的特点之外,还具有CMOS低功耗的特点。例如8051的功耗为630mw,而80C51的功耗只有120mw。在便携式、手提式或野外作业仪器设备上低功耗是非常有意义的。因此,在这些产品中必须使用CHMOS的单片机芯片。 2尽量实现单片化尽管我们常说,单片机是将中央处理器CPU、存储器和I/O接口电路等主要功能部件集成在一块集成电路芯片上的微型计算机,但由于工艺和其它方面的原因,很多功能部件并未集成在单片机芯片内部。于是,用户通常的做法是根据系统设计的需要在外围扩展功能芯片。随着集成电路技术的快速发展和“以人为本”思想在单片机设计上的体现,很多单片机生产厂家充分考虑到用户的需求,将一些常用的功能部件,如A/D(模/数转换器)、D/A(数/模转换器)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 研究报告 > 信息产业


经营许可证编号:宁ICP备18001539号-1