毕业设计(论文)-步进电机的西门子PLC控制.doc

上传人:韩长文 文档编号:3285441 上传时间:2019-08-08 格式:DOC 页数:53 大小:1.43MB
返回 下载 相关 举报
毕业设计(论文)-步进电机的西门子PLC控制.doc_第1页
第1页 / 共53页
毕业设计(论文)-步进电机的西门子PLC控制.doc_第2页
第2页 / 共53页
毕业设计(论文)-步进电机的西门子PLC控制.doc_第3页
第3页 / 共53页
毕业设计(论文)-步进电机的西门子PLC控制.doc_第4页
第4页 / 共53页
毕业设计(论文)-步进电机的西门子PLC控制.doc_第5页
第5页 / 共53页
点击查看更多>>
资源描述

《毕业设计(论文)-步进电机的西门子PLC控制.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)-步进电机的西门子PLC控制.doc(53页珍藏版)》请在三一文库上搜索。

1、东北石油大学本科生毕业设计 I 目 录 第第 1 章章 绪绪 论论.1 1.1 设计背景.1 1.2 系统设计的任务.3 1.3 本章小结.3 第第 2 章章 步进电机及步进电机及 PLC 简介简介.4 2.1 步进电机简介.4 2.2 PLC 的发展概述8 2.3 PLC 技术在步进电机控制中的应用8 2.4 本章小结.10 第第 3 章章 PLC 控制步进电机工作方式的选择控制步进电机工作方式的选择11 3.1 常见的步进电机的工作方式.11 3.2 步进电机控制原理.12 3.3 PLC 控制步进电机的方法12 3.4 PLC 控制步进电机的设计思路13 3.5 本章小结.15 第第 4

2、 章章 S7300 控制步进电机硬件设计控制步进电机硬件设计16 4.1 S7300 的介绍.16 4.2 步进电机的选择.20 4.3 步进电机驱动电路设计.21 4.4 PLC 驱动步进电机22 4.5 本章小结.23 第第 5 章章 控制系统的软件设计控制系统的软件设计.24 5.1 STEP7 概述24 5.2 STEP7 项目的创建26 5.3 本设计相关指令介绍.30 东北石油大学本科生毕业设计 II 5.4 程序的编写.33 5.5 程序设计的说明.35 5.6 STEP7 的硬件组态35 5.7 运用组态软件监视 PLC 系统40 5.8 本章小结.41 结结 论论.42 参考

3、文献参考文献.43 致致 谢谢.44 附附 录录.45 东北石油大学本科生毕业设计 1 第 1 章 绪 论 1.1 设计背景 步进电动机已成为除直流电动机和交流电动机以外的第三类电动机,传统电 动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的 作用。可是在人类社会进入自动化时代的今天,传统电动机的功能已不能满足工 厂自动化和办公自动化等各种运动控制系统的要求。为适应这些要求,发展了一 系列新的具备控制功能的电动机系统,其中较有自己特点,且应用十分广泛的一 类便是步进电动机。 步进电动机的发展与计算机工业密切相关。自从步进电动机在计算机外围设 备中取代小型直流电动机以后,使

4、其设备的性能提高,很快地促进了步进电动机 的发展。另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行 部件的步进电动机推广应用到其他领域,如电加工机床、小功率机械加工机床、 测量仪器、光学和医疗仪器以及包装机械等。任何一种产品成熟的过程,基本上 都是规格品种逐步统一和简化的过程。现在,步进电动机的发展已归结为单段式 结构的磁阻式、混合式和爪极结构的永磁式三类。爪极电机价格便宜,性能指标 不高,混合式和磁阻式主要作为高分辨率电动机,由于混合式步进电动机具有控 制功率小,运行平稳性较好而逐步处于主导地位。最典型的产品是二相 8 极 50 齿的电动机,步距角 1.80.9(全步半步) ;

5、 还有五相 10 极 50 齿和一些转 子 100 齿的二相和五相步进电动机,五相电动机主要用于运行性能较高的场合。 到目前,工业发达国家的磁阻式步进电动机已极少见1。 步进电动机最大的生产国是日本,如日本伺服公司、东方公司、SANYO DENKI 和 MINEBEA 及 NPM 公司等,特别是日本东方公司,无论是电动机性能 和外观质量,还是生产手段,都堪称是世界上最好的。现在日本步进电动机年产 量(含国外独资公司)近 2 亿台,德国也是世界上步进电动机生产大国。德国 B.L.公司 1994 年五相混合式步进电动机专利期满后,推出了新的三相混合式步进 电动机系列,为定子 6 极转子 50 齿结

6、构,配套电流型驱动器,每转步数为 200、400、1000、2000、4000、10000 和 20000,它具有通常的二相和五相步进 电动机的分辨率,还可以在此基础上再 10 细分,分辨率提高 10 倍,这是一种很 好的方案,充分运用了电流型驱动技术的功能,让三相电动机同时具有二相和五 相电动机的性能。与此同时,日本伺服公司也推出了他们的三相混合式步进电动 机。该公司阪正文博士研制了三种不同的永磁式三相步进电动机,即 HB 型(混 东北石油大学本科生毕业设计 2 合式) 、RM 性(定子和混合式相似,转子则同永磁式环形磁铁相似)和爪极 PM 型。将三相步进电动机同二相步进电动机进行比较后得出

7、: 1)在获得小步距角方面,三相电动机比二相电动机要好。 2)三相电动机的两相励磁最大保持力矩为 3T1(T1 为单相励磁转矩) ,而二 相电动机为 2T1,所以三相电动机的合成力矩大。 3)三相电动机的转矩波动比二相电动机要小。 4)三相电动机连续 2 步用于半步的转矩差比二相电动机的要小。 5)三相电动机绕组可以星形连接,三个终端驱动,励磁电路晶体管 6 个; 而二相电动机是 8 个。 6)连续运转时,由于三相步进电动机结构原因,磁通和电流的三次谐波被消 除了,所以三相电动机的振动力矩比二相电动机的要小.结论是显而易见的2。 另外的结论是 HB 型电动机更适合于低速大转矩用途;RM 型适用

8、于平稳运行 以及转速大于 1000r/min 的用途;而 PM 型成本低,在低转速时的振动和高转速 时的大转矩方面,三相 PM 型电动机比两相电动机的性能要好。因此,当前最有 发展前景的当属混合式步进电动机,而混合式电动机又向以下四个方向发展: 发展趋势一, 随着电动机本身应用领域的拓宽以及各类整机的不断小型化, 要求与之配套的电动机也必须越来越小,在 57、42 机座号的电动机应用了多年 后,现在其机座号向 39、35、30、25 方向向下延伸。瑞士 ESCAP 公司最近还研 制出外径仅 10mm 的步进电动机。 发展趋势之二,是改圆形电动机为方形电动机。由于电动机采用方型结构, 使得转子有

9、可能设计得比圆形大,因而其力矩体积比将大为提高。同样机座号的 电动机,方形的力矩比圆形的将提高 3040 发展趋势之三,对电动机进行综合设计。即把转子位置传感器,减速齿轮等 和电动机本体综合设计在一起,这样使其能方便地组成一个闭环系统,因而具有 更加优越的控制性能。 发展趋势之四,向五相和三相电动机方向发展。目前广泛应用的二相和四相 电动机,其振动和噪声较大,而五相和三相电动机具有优势性。而就这两种电动 机而言,五相电动机的驱动电路比三相电动机复杂,因此三相电动机系统的性能 价格比要比五相电动机更好一些。 我国的情况有所不同,直到 20 世纪 80 年代,一直是磁阻式步进电动机占统 治地位,混

10、合式步进电动机是 80 年代后期才开始发展,至今仍然是二种结构类 型同时并存。尽管新的混合式步进电动机完全可能替代磁阻式电动机,但磁阻式 电动机的整机获得了长期应用,对于它的技术也较为熟悉,特别是典型的混合式 步进电动机的步距角(0.9/1.8)与典型的磁阻式电动机的步距角(0.75 /1.5)不一样,用户改变这种产品结构不是很容易的,这就使得两种机型并存 的局面难以在较短时间内改变。这种现状对步进电动机的发展是不利的。 东北石油大学本科生毕业设计 3 1.2 系统设计的任务 步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的 改变都可在少数脉冲内完成,且可获得较高的控制精度,

11、因而得到了广泛的应用。 步进电机是一种将电脉冲信号转换成直线位移或角位移的执行元件。步进电机具 有转子惯量低、定位精度高、无累积误差、控制简单等特点,已成为运动控制领 域的主要执行元件之一。 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个行业 的控制领域都将有广泛应用。而现在的可编程控制器(通常称 PLC) 是一种工业 控制计算机,具有模块化结构、配置灵活、高速的处理速度、精确的数据处理能 力、多种控制功能、网络技术和优越的性价比等性能,能充分适应工业环境,简 单易懂,操作方便,可靠性高,是目前广泛应用的控制装置之一。 本设计是采用是 S7300 控制三相六拍的反应步式步进电机

12、,通过软件设计 移位脉冲频率来控制步进电机的慢速、中速、快速。移位寄存器指令 MW0 的低 八位按照三相六拍的步进顺序进行赋值来控制步进动机的转动。围绕这两个主要 方面,可提出具体的控制要求如下: 1)可正转起动或反转起动; 2)运行过程中,正反转可随时不停机切换; 3)步进速度可分为高速(0. 05 s) 、中速(0. 1s) 、低速(0. 5 s) 三档,并可随 时手控变速; 4)停止时,应对移位寄存器清零,使每次起动均从 A 相开始。 1.3 本章小结 本章阐述了此次设计的背景,即步进电机的发展状况,和步进电机在工业自 动化生产中的重大作用。提出了本次设计的设计任务,用 PLC 控制步进

13、电机以不 同的方式运行。 东北石油大学本科生毕业设计 4 第 2 章 步进电机及 PLC 简介 2.1 步进电机简介 步进电动机是一种将数字脉冲信号转换成机械角位移或者线位移的数模转换 元件。在经历了一个大的发展阶段后,目前其发展趋于平缓。然而,由于电动机 的工作原理和其它电动机有很大的差别,具有其它电动机所没有的特性。因此, 沿着小型、高效、低价的方向发展。 步进电动机由此而得名。步进电动机的运行是在专用的脉冲电源供电下进行 的,其转子走过的步数,或者说转子的角位移量,与输入脉冲数严格成正比。另 外,步进电动机动态响应快,控制性能好,只要改变输入脉冲的顺序,就能方便 地改变其旋转方向。这些特

14、点使得步进电动机与其它电动机有很大的差别。因此, 步进电动机的上述特点,使得由它和驱动控制器组成的开环数控系统,既具有 较高的控制精度,良好的控制性能,又能稳定可靠地工作。因此,在数字控制系 统出现之初,步进电动机经历过一个大的发展阶段3。 2.1.1 步进电机的分类 1)永磁式步进电机一般为两相,转矩和体积较小,步进角一般为 7.5 度或 15 度。 2)反应式步进电机一般为三相,可实现大转矩输出,步进角一般为 1.5 度, 但噪声和振动都很大。 3)混合式步进电机是指混合了永磁式和反应式的优点,它又分为两相和五 相。两相步进角一般分为 1.8 度而五相步进角一般为 0.72 度,这种步进电

15、机的应 用最为广泛。 三相反应式步进电机的结构如图所示。 定子、转子是用硅钢片或其他软磁 材料制成的。定子的每对极上都绕有一对绕组,构成一相绕组,共三相称为 A、B、C 相。 东北石油大学本科生毕业设计 5 图 2-1 三相反应式步进电机的结构图 在定子磁极和转子上都开有齿分度相同的小齿,采用适当的齿数配合,当 A 相磁极的小齿与转子小齿一一对应时,B 相磁极的小齿与转子小齿相互错开 1/3 齿距,C 相则错开 2/3 齿距。如图所示: 图 2-2 A 相通电定转子错开示意图 电机的位置和速度由绕组通电次数(脉冲数)和频率成一一对应关系。而方 向由绕组通电的顺序决定。 2.1.2 步进电机的基

16、本参数 1.电机固有步距角 它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给 出了一个步距角的值,这个步距角可以称之为“电机固有步距角” ,它不一定是 电机实际工作时的真正步距角,真正的步距角和驱动器有关。 2.步进电机的相数 步进电机的相数是指电机内部的线圈组数,目前常用的有二相、三相、四相、 五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为 0.9/1.8、三相的为 0.75/1.5、五相的为 0.36/0.72 。在没有细分驱动 东北石油大学本科生毕业设计 6 器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。如果使用 细分驱动器,则“相数

17、”将变得没有意义,用户只需在驱动器上改变细分数,就 可以改变步距角。 3.保持转矩 保持转矩是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进 电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进 电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所 以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说 2Nm 的 步进电机,在没有特殊说明的情况下是指保持转矩为 2Nm 的步进电机。 4.钳制转矩 钳制转矩是指步进电机没有通电的情况下,定子锁住转子的力矩。由于反应 式步进电机的转子不是永磁材料,所以它没有钳制转矩。 2.1.3 步进电机主要

18、特点 1)一般步进电机的精度为步进角的 3-5%,且不累积。 2)步进电机外表允许的最高温度取决于不同电机磁性材料的退磁点,步进 电机温度过高时会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此 电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性 材料的退磁点都在摄氏 130 度以上,有的甚至高达摄氏 200 度以上,所以步进电 机外表温度在摄氏 80-90 度完全正常。 3)步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相 绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下, 电机随频率(或速度)的增大而相电流减小,从而导致力矩下降

19、。 4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有 啸叫声。 步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正 常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步 或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉 冲频率应有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频4。 2.1.4 反应式步进电机原理 2.1.4.1 结构 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分 别与转子齿轴线错开。0、1/3、2/3(相邻两转子齿轴线间的距离为齿距以 东北石油大学本科生毕业设计 7 表示

20、) ,即 A 与齿 1 相对齐,B 与齿 2 向右错开 1/3,C 与齿 3 向右错开 2/3,A与齿 5 相对齐, (A就是 A,齿 5 就是齿 1)如图: 图 2-3 定转子的展开图 2.1.4.2 旋转 三相如 A 相通电,B,C 相不通电时,由于磁场作用,齿 1 与 A 对齐, (转 子不受任何力,以下均同) 。如 B 相通电,A,C 相不通电时,齿 2 应与 B 对齐, 此时转子向右移过 1/3,此时齿 3 与 C 偏移为 1/3,齿 4 与 A 偏移(-1/3) =2/3。如 C 相通电,A,B 相不通电,齿 3 应与 C 对齐,此时转子又向右移过 1/3,此时齿 4 与 A 偏移

21、为 1/3对齐。如 A 相通电,B,C 相不通电,齿 4 与 A 对齐,转子又向右移过 1/3这样经过 A、B、C、A 分别通电状态,齿 4(即齿 1 前一齿)移到 A 相,电机转子向右转过一个齿距,如果不断地按 A,B,C,A通电,电机就每步(每脉冲)1/3,向右旋转。如按 A,C,B,A通电,电机就反转。 由此可见,电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。 而方向由导电顺序决定。不过,出于对力矩、平稳、噪音及减少角度等方面考虑。 往往采用 A-AB-B-BCC-CA-A 这种导电状态,所以本设计采用三相六拍。这样 将原来每步 1/3改变为 1/6。甚至于通过二相电流不同的

22、组合,使其 1/3变为 1/12,1/24,这就是电机细分驱动的基本理论依据5。 不难推出:电机定子上有 m 相励磁绕阻,其轴线分别与转子齿轴线偏移 1/m,2/m(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制这 是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步 进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 2.1.5 步进电机在工业控制领域的主要应用 步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种 家电产品中,例如打印机、磁盘驱动器、玩具、雨刷、机械手臂和录像机等。另 外步进电机也广泛应用于各种工业自动化系统中。由于

23、通过控制脉冲个数可以很 方便的控制步进电机转过的角位移,且步进电机的误差不积累,可以达到准确定 位的目的。还可以通过控制频率很方便的改变步进电机的转速和加速度,达到任 东北石油大学本科生毕业设计 8 意调速的目的,因此步进电机可以广泛的应用于各种开环控制系统中6。 东北石油大学本科生毕业设计 9 2.2 PLC 的发展概述 可编程控制器(简称 PLC) 是种数字运算操作的电子系统,是在 20 世纪 60 年代末面向工业环境由美国科学家首先研制成功的。它采用可编程序的存储器, 其内部存贮执行逻辑运算、顺序控制、计数和算术运算等操作指令,并通过数字 的、模拟的输入和输出,控各种类型的机械或生产过程

24、。可编程序控制器及其有 关设备,都是按易于与工业控制系统形成一体、易于扩充其功能的原则设计的。 PLC 自产生至今只有 30 多年的历史,却得到了迅速发展和广泛应用,成为当代 工业自动化的主要支柱之一。产生和发展过程现代社会要求生产厂家对市场的需 求做出迅速的反应,生产出小批量、多品种、多规格、低成本和高质量的产品。 老式的继电器控制系统已无法满足这一要求,迫使人们去寻找一种新的控制装置 取而代之。 PLC 实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机 相同: 1)中央处理单元(CPU)是 PLC 的控制中枢。它按照 PLC 系统程序赋予的功 能接收并存储从编程器键入的用户程

25、序和数据;检查电源、存储器、I/O 以及警 戒定时器的状态,并能诊断用户程序中的语法错误。当 PLC 投入运行时,首先它 以扫描的方式接收现场各输入装置的状态和数据,并分别存入 I/O 映象区,然后 从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑 或算数运算的结果送入 I/O 映象区或数据寄存器内。等所有的用户程序执行完毕 之后,最后将 I/O 映象区的各输出状态或输出寄存器内的数据传送到相应的输出 装置,如此循环运行,直到停止运行。 为了进一步提高 PLC 的可靠性,近年来对大型 PLC 还采用双 CPU 构成冗余 系统,或采用三 CPU 的表决式系统。这样,即使某个

26、 CPU 出现故障,整个系统 仍能正常运行。 2)存储器存放系统软件的存储器称为系统程序存储器。存放应用软件的存 储器称为用户程序存储器7。 2.3 PLC 技术在步进电机控制中的应用 随着微电子技术和计算机技术的发展,可编程序控制器有了突飞猛进的发展, 其功能已远远超出了逻辑控制、顺序控制的范围。继续沿着小型化的方向发展。 随着电动机本身应用领域的拓宽以及各类整机的不断小型化,要求与之配套的电 动机也必须越来越小。对电动机进行综合设计。即把转子位置传感器,减速齿轮 等和电动机本体综合设计在一起,这样使其能方便地组成一个闭环系统,因而具 东北石油大学本科生毕业设计 10 有更加优越的控制性。向

27、五相和三相电动机方向发展,目前广泛应用的二相和四 相电动机,其振动和噪声较大,而五相和三相电动机具有优势性。而就这两种电 动机而言,五相电动机的驱动电路比三相电动机复杂,因此三相电动机系统的性 能价格比要比五相电动机更好一些8。 目前利用可编程序控制器(即 PLC 技术)可以方便地实现对电机速度和位置 的控制,方便地进行各种步进电机的操作,完成各种复杂的工作,它代表了先进 的工业自动化革命,加速了机电一体化的实现。 用 PLC 对步进电机也具有良好的控制能力,利用其高速脉冲输出功能或运动 控制功能,现对步进电机的控制9。 步进电机是一种将电脉冲信号转换成直线位移或角位移的执行元件,每当对 其施

28、加一个电脉冲时,其输出轴便转过一个固定的角度。步进电机的输出位移量 与输入脉冲个数成正比,其转速与单位时间内输入的脉冲数(即脉冲频率)成正比, 其转向与脉冲分配到步进电机的各相绕组的相序有关。所以只要控制指令脉冲的 数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和转 向10。PLC 直接控制步进电机系统由 PLC 和步进电机组成,PLC 具有实时刷新 技术,输出信号的频率可以达到数千赫兹或更高,使得脉冲分配能有很高的分配 速度,充分利用步进电机的速度响应能力,提高整个系统的快速性。并且,PLC 有采用大功率晶体管的输出端口,能够满足步进电机各相绕组数 10V 级脉冲电压、

29、1A 级脉冲电流的驱动要求11。 有以上步进电机的工作原理以及工作方式我们可以看出: 控制步进电机最重要的就是要产生出符合要求的控制脉冲。西门子 PLC 本身 带有高速脉冲计数器和高速脉冲发生器,其发出的频率最大为 10KHz,能够满足 步进电动机的要求。对 PLC 提出两个特性要求。一是在此应用的 PLC 最好是具 有实时刷新技术的 PLC,使输出信号的频率可以达到数千赫芝或更高。其目的是 使脉冲能有较高的分配速度,充分利用步进电机的速度响应能力,提高整个系统 的快速性。二是 PLC 本身的输出端口应该采用大功率晶体管,以满足步进电机各 相绕组数十伏脉冲电压、数安培脉冲电流的驱动要求12。如

30、下图所示: PLC步进电机输入信号 图 2-4 步进电机的 PLC 直接控制 东北石油大学本科生毕业设计 11 2.4 本章小结 本章阐述了步进电机的主要特点与工作原理,并介绍了 PLC 的发展状况以及 PLC 技术在步进电机控制中所发挥的巨大作用。 东北石油大学本科生毕业设计 12 第 3 章 PLC 控制步进电机工作方式的选择 3.1 常见的步进电机的工作方式 常见的步进电机的工作方式有以下三种: 1.三相单三拍:A- B- C- A 图 3-1 三相单三拍工作方式时序图 2.三相双三拍:AB - BC - CA - AB 图 3-2 三相双三拍工作方式时序图 3.三相六拍:A - AB

31、- B - BC - C - CA - A 图 3-3 三相六拍工作方式时序图 东北石油大学本科生毕业设计 13 3.2 步进电机控制原理 3.2.1 控制步进电机换向顺序 通电换向这一过程称为脉冲分配。例如:三相步进电机的三相三拍工作方式, 其各相通电顺序为 A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制 A、B、C、D 相的通断。 3.2.2 控制步进电机的转向 如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则 电机就反转。 3.2.3 控制步进电机的速度 如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一 步。两个脉冲的间隔越短,步进电机就转得

32、越快。调整发出的脉冲频率,就可以 对步进电机进行调速。 3.3 PLC 控制步进电机的方法 在本设计中直接使用 PLC 控制步进电机,可使用 PLC 产生控制步进电机所 需要的各种时序的脉冲。三相步进电机可采用三种工作方式:三相单三拍,三相 双三拍,三相单六拍。这三种方式的主要区别是:电机绕组的通电、放电时间不 同。工作方式是单三拍时通电时间最短,双三拍时允许放电时间最短,六拍时通 电时间和放电时间最长。因此,同一脉冲频率时,六拍的工作方式出力最大。而 且,电机是三拍的工作方式时,其分辨率为 3 度,六拍的工作方式时,分辨率是 1.5 度。所以,在本课题中,我们采用三相六拍的工作方式,在这种控

33、制方式下 工作,步进电机的运行特性好,步进电机分辨率最高。 可根据步进电机的工作方式,以及所要求的频率(步进电机的速度) ,画出 A、B、C 各相的时序图。并使用 PLC 产生各种时序的脉冲。例如:本设计采用 西门子 S7-300PLC 控制三相步进电机的过程。 东北石油大学本科生毕业设计 14 图 3-4 三相单六拍正向时序图 3.4 PLC 控制步进电机的设计思路 3.4.1 步进电机控制方式 典型的步进电机控制系统如图所示: 图 3-5 典型的步进电机控制系统 步进电动机是一种将数字脉冲信号转换成机械角位移或者线位移的数模转换 元件。在经历了一个大的发展阶段后,日前其发展趋向平缓。然而,

34、其基本原理 是不变的,即:是一种将电脉冲信号转换成直线位移或角位移的执行元件,每当 对其施加一个电脉冲时,其输出转过一个固定的角度。步进电机的输出位移量与 输入脉冲个数成正比,其转速与单位时间内输入的脉冲数(即脉冲频率)成正比, 其转向与脉冲分配到步进电机的各相绕组的脉冲顺序有关。所以只要控制指令脉 冲的数量、频率及电机绕组通电的顺序,便可控制步进电机的输出位移量、速度 和转向。步进电机的机理是基于最基本的电磁铁作用,可简单地定义为,根据输 人的脉冲信号,每改变一次励磁状态就前进一定角度或长度,若不改变励磁状态 则保持一定位置而静止的电动机:从广义上讲,步进电动机是一种受电脉冲信号 控制的无刷

35、式直流电机,也可看作是在一定频率范围内转速与控制脉冲频率同步 的同步电动机。 步进电机的控制和驱动方法很多,按照使用的控制装置来分可以分为:普通 集成电路控制、单片机控制、工业控制机控制、可编程控制器控制等几种;按照 控制结构可分为:硬脉冲生成器硬脉冲分配结构(硬-硬结构)、软脉冲生成器软脉 冲分配器结构(软-软结构)、软脉冲生成器硬脉冲分配器结构(软-硬结构)。 东北石油大学本科生毕业设计 15 1硬硬结构 如图 3.6 所示,这种步进电机的控制驱动系统由硬件电路脉冲生成器、硬件电 路脉冲分配器、驱动器组成。这种控制驱动方式运行速度比较快,但是电路复杂, 功能单一。 2软软结构 如图 3.7

36、 所示,这种步进电机的控制驱动系统由软件程序脉冲生成器、软件程 序脉冲分配器、驱动器组成,而软件脉冲生成器和脉冲分配器都有微处理器或微 控制器通过编程实现。用单片机、工业控制机、普通个人计算机、可编程序控制 器控制步进电机一般均可采用这种结构。这种控制驱动方法电路结构简单、可以 实现复杂的功能,但是占用 CPU 时间多,给微处理器运行其他工作造成困难。 3软硬结构 如图 3.8 所示,这种步进电机的控制驱动系统由软件脉冲生成器、硬件脉冲分 配器和硬件驱动器组成。硬件脉冲分配器是通过脉冲分配器芯片(如 8713 芯片)来 实现通电换相控制的。这种控制驱动方法电路结构简单、可以实现复杂的功能, 同

37、时占用 CPU 时间较少,用可编程控制器全部实现了控制器和驱动器的功能。 在 PLC 中,由软件代替了脉冲生成器和脉冲分配器,直接对步进电机进行并行控 制,并且由 PLC 输出端口直接驱动步进电机。如图 3.7 所示,这是一种软-软结构, 脉冲生成器和脉冲分配器均有可编程序控制器程序实现。 图 3-6 硬硬结构控制 图 3-7 软软结构控制 图 3-8 软硬结构控制 3.4.2 西门子 PLC 控制步进电机 由以上步进电机的工作原理以及工作方式我们可以看出: 控制步进电机最重要的就是要产生出符合要求的控制脉冲。西门子 PLC 本身 带有高速脉冲计数器和高速脉冲发生器,其发出的频率最大为 10K

38、Hz,能够满足 东北石油大学本科生毕业设计 16 步进电动机的要求。对 PLC 提出两个特性要求。一是在此应用的 PLC 最好是具 有实时刷新技术的 PLC,使输出信号的频率可以达到数千赫芝或更高。其目的是 使脉冲能有较高的分配速度,充分利用步进电机的速度响应能力,提高整个系统 的快速性。二是 PLC 本身的输出端口应该采用大功率晶体管,以满足步进电机各 相绕组数十伏脉冲电压、数安培脉冲电流的驱动要求。 对输入电机的相关脉冲控制,从而达到对步进电机三相绕组的 48V 直流电源 的依次通、断,形成旋转磁场,使步进电机转动。 3.5 本章小结 本章说明了三相步进电机几种常见的工作方式,即三相单三拍

39、,三相双三拍 和三相六拍。阐述了步进电机的控制原理,以及 PLC 控制步进电机运行的方法。 东北石油大学本科生毕业设计 17 第 4 章 S7300 控制步进电机硬件设计 4.1 S7300 的介绍 PLC 实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机 相同。 中央处理单元(CPU)是 PLC 的控制中枢。它按照 PLC 系统程序赋予的功能接 收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O 以及警戒定 时器的状态,并能诊断用户程序中的语法错误。当 PLC 投入运行时,首先它以扫 描的方式接收现场各输入装置的状态和数据,并分别存入 I/O 映象区,然后从用 户程

40、序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算 数运算的结果送入 I/O 映象区或数据寄存器内。等所有的用户程序执行完毕之后, 最后将 I/O 映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置, 如此循环运行,直到停止运行。 为了进一步提高 PLC 的可靠性,近年来对大型 PLC 还采用双 CPU 构成冗余 系统,或采用三 CPU 的表决式系统。这样,即使某个 CPU 出现故障,整个系统 仍能正常运行。 存储器存放系统软件的存储器称为系统程序存储器。存放应用软件的存储器 称为用户程序存储器。 PLC 常用的存储器类型: 1)RAM 这是一种读/写存储器(随机存储器

41、),其存取速度最快,由锂电池支 持。 2)EPROM 这是一种可擦除的只读存储器。在断电情况下,存储器内的所有 内容保持不变。 3)EEPROM 这是一种电可擦除的只读存储器。使用编程器就能很容易地对 其所存储的内容进行修改。 空间的分配: 虽然各种 PLC 的 CPU 的最大寻址空间各不相同,但是根据 PLC 的工作原理, 其存储空间一般包括以下三个区域: 1)系统程序存储区 2)系统 RAM 存储区(包括 I/O 映象区和系统软设备等) 3)用户程序存储区 系统程序存储区:在系统程序存储区中存放着相当于计算机操作系统的系统 东北石油大学本科生毕业设计 18 程序。包括监控程序、管理程序、命

42、令解释程序、功能子程序、系统诊断子程序 等。由制造厂商将其固化在 EPROM 中,用户不能直接存取。它和硬件一起决定 了该 PLC 的性能。 系统 RAM 存储区:系统 RAM 存储区包括 I/O 映象区以及各类软设备,如: 逻辑线圈、数据寄存器、计时器、计数器、变址寄存器、累加器等存储器。 1)I/O 映象区:由于 PLC 投入运行后,只是在输入采样阶段才依次读入各输 入状态和数据,在输出刷新阶段才将输出的状态和数据送至相应的外设。因此, 它需要一定数量的存储单元(RAM)以存放 I/O 的状态和数据,这些单元称作 I/O 映象区。一个开关量 I/O 占用存储单元中的一个位(bit) ,一个

43、模拟量 I/O 占用存 储单元中的一个字(16 个 bit) 。因此整个 I/O 映象区可看作两个部分组成:开关 量 I/O 映象区;模拟量 I/O 映象区。 2)系统软设备存储区 :除了 I/O 映象区区以外,系统 RAM 存储区还包括 PLC 内部各类软设备(逻辑线圈、计时器、计数器、数据寄存器和累加器等)的 存储区。该存储区又分为具有失电保持的存储区域和无失电保持的存储区域,前 者在 PLC 断电时,由内部的锂电池供电,数据不会遗失。 CPU313C 集成有 3 个用于高速计数或高频脉冲输出的特殊通道,3 个通道位 于 CPU313C 集成数字量输出点首位字节的最低三位,这三位通常情况下

44、可以作 为普通的数字量输出点来使用。在需要高频脉冲输出时,可通过硬件设置定义这 三位的属性,将其作为高频脉冲输出通道来使用。作为普通数字量输出点使用时, 其系统默认地址为 Q124.0、Q124.1、Q124.2(该地址用户可根据需要自行修改) , 作为高速脉冲输出时,对应的通道分别为 0 通道、1 通道、2 通道(通道号为固 定值,用户不能自行修改) 。每一通道都可输出最高频率为 2.5KHZ(周期为 0.4ms)的高频脉冲。CPU313C 中,X2 前接线端子 22、23、24 号接线端子分别 对应通道 0、通道 1、和通道 2。另外,每个通道都有自己的硬件控制门,0 通道 的硬件门对应

45、X2 前接线端子的 4 号接线端子,对应的输入点默认地址为 I124.2。1 通道硬件门 7 号接线端子,对应的输入点默认地址为 I124.5,而 2 号通 道硬件门为 12 号接线端子,对应的输入点默认地址为 I125.0。 东北石油大学本科生毕业设计 19 图 4-1 CPU313C 的结构 4.1.1 西门子 PLC 应用中需要注意的问题 1)温度:PLC 要求环境温度在 0 55 ,安装时不能放在发热量大的元 件下面,四周通风散热的空间应足够大。 2)湿度:为了保证 PLC 的绝缘性能,空气的相对湿度应小于 85%( 无露 珠) 。 3)震动:应使 PLC 远离强烈的震动源,防止振动频

46、率为 10 Hz55Hz 的 频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震 胶等。 4)空气:避免有腐蚀和易燃的气体,如氯化氢、硫化氢等。对于空气中有 较多粉尘或腐蚀性气体的环境,可将 PLC 安装在封闭性较好的控制室或控制柜 中。 5)电源:PLC 对于电源线带来的干扰具有一定的抵制能力。在可靠性要求 很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减 少设备与地之间的干扰。一般 PLC 都有直流 24 V 输出提供给输入端,当输入 端使用外接直流电源时,应选用直流稳压电源。普通的整流滤波电源,由于纹波 的影响,容易使 PLC 接收到错误信息。

47、4.1.2 控制系统中干扰及其来源 影响 PLC 控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其 东北石油大学本科生毕业设计 20 原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速 产生电磁波,电磁波对其具有强烈的干扰。 1)强电干扰。由于电网覆盖范围广,电网受到空间电磁干扰而在线路上感 应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备启停、交直流 传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。 2)柜内干扰。控制柜内的高压电器,大的电感性负载,混乱的布线都容易 对 PLC 造成一定程度的干扰。 3)来自接地系统混乱时的干扰。正确

48、的接地,既能抑制电磁干扰的影响, 又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使 PLC 系统将无法正常工作。 4)来自 PLC 系统内部的干扰。主要由系统内部元器件及电路间的相互电磁 辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互 影响及元器件间的相互不匹配使用等。 5)变频器干扰。一是变频器启动及运行过程中产生谐波对电网产生传导干 扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的 电磁辐射干扰,影响周边设备的正常工作。 4.1.3 主要抗干扰措施 1)合理处理电源以抑制电网引入的干扰 对于电源引入的电网干扰可以安装一台带屏

49、蔽层的变比为 11 的隔离变压 器,以减少设备与地之间的干扰,还可以在电源输入端串接 LC 滤波电路。 2)合理安装与布线 动力线、控制线以及 PLC 的电源线和 RS485 网线应分别配线,各走各的 桥架或线槽。PLC 应远离强干扰源,柜内 PLC 应远离动力线( 二者之间距离应 大于 200 mm),与 PLC 装在同一个柜子内的电感性负载,如功率较大的继电器、 接触器的线圈,应并联 RC 消弧电路。PLC 的输入与输出最好分开走线,开关 量与模拟量也要分开敷设。模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两 端接地,接地电阻应小于屏蔽层电阻的 1/10。交流输出线和直流输出线不要用同 一根电缆,输出线应尽量远离高压线和动力线,避免并行。 4.1.4 正确选择接地点以完善接地系统 PLC 控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混 乱对 PLC 系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电 位差,引起地环路电流,影响系统正常工作。 1)安全地或电源接地:将电源线接地端和柜体连线接地为安全接地。 东北石油大学本科生毕业设计 21 2)系统接地:PLC 控制器

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 研究报告 > 信息产业


经营许可证编号:宁ICP备18001539号-1