序列比对在生物信息学应用-.doc

上传人:大张伟 文档编号:5693646 上传时间:2020-07-22 格式:DOC 页数:4 大小:16KB
返回 下载 相关 举报
序列比对在生物信息学应用-.doc_第1页
第1页 / 共4页
序列比对在生物信息学应用-.doc_第2页
第2页 / 共4页
序列比对在生物信息学应用-.doc_第3页
第3页 / 共4页
序列比对在生物信息学应用-.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《序列比对在生物信息学应用-.doc》由会员分享,可在线阅读,更多相关《序列比对在生物信息学应用-.doc(4页珍藏版)》请在三一文库上搜索。

1、序列比对在生物信息学中的应用最常见的比对是蛋白质序列之间或核酸序列之间的两两比对,通过比较两个序列之间的相似区域和保守性位点,寻找二者可能的分子进化关系。进一步的比对是将多个蛋白质或核酸同时进行比较,寻找这些有进化关系的序列之间共同的保守区域、位点和profile,从而探索导致它们产生共同功能的序列模式。此外,还可以把蛋白质序列与核酸序列相比来探索核酸序列可能的表达框架;把蛋白质序列与具有三维结构信息的蛋白质相比,从而获得蛋白质折叠类型的信息和预测一些新发现基因的功能。序列两两比对序列比对的理论基础是进化学说,如果两个序列之间具有足够的相似性,就推测二者可能有共同的进化祖先,经过序列内残基的替

2、换、残基或序列片段的缺失、以及序列重组等遗传变异过程分别演化而来。序列相似和序列同源是不同的概念,序列之间的相似程度是可以量化的参数,而序列是否同源需要有进化事实的验证。在残基残基比对中,可以明显看到序列中某些氨基酸残基比其它位置上的残基更保守,这些信息揭示了这些保守位点上的残基对蛋白质的结构和功能是至关重要的,例如它们可能是酶的活性位点残基,形成二硫键的半胱氨酸残基,与配体结合部位的残基,与金属离子结合的残基,形成特定结构motif的残基等等。通过大量实验和序列比对的分析,一般认为蛋白质的结构和功能比序列具有更大的保守性,因此粗略的说,如果序列之间的相似性超过30%,它们就很可能是同源的。早

3、期的序列比对是全局的序列比较,但由于蛋白质具有的模块性质,可能由于外显子的交换而产生新蛋白质,因此局部比对会更加合理。通常用打分矩阵描述序列两两比对,两条序列分别作为矩阵的两维,矩阵点是两维上对应两个残基的相似性分数,分数越高则说明两个残基越相似。因此,序列比对问题变成在矩阵里寻找最佳比对路径。Genbank、SWISS-PROT等序列数据库提供的序列搜索服务都是以序列两两比对为基础的。不同之处在于为了提高搜索的速度和效率,通常的序列搜索算法都进行了一定程度的优化,如最常见的FASTA工具和BLAST工具。FASTA是第一个被广泛应用的序列比对和搜索工具包,包含若干个独立的程序。FASTA为了

4、提供序列搜索的速度,会先建立序列片段的“字典”,查询序列先会在字典里搜索可能的匹配序列,字典中的序列长度由ktup参数控制,缺省的ktup=2。FASTA的结果报告中会给出每个搜索到的序列与查询序列的最佳比对结果,以及这个比对的统计学显著性评估E值。BLAST是现在应用最广泛的序列相似性搜索工具,相比FASTA有更多改进,速度更快,并建立在严格的统计学基础之上。BLAST包含五个程序和若干个相应的数据库,分别针对不同的查询序列和要搜索的数据库类型。其中翻译的核酸库指搜索比对时会把核酸数据按密码子按所有可能的阅读框架转换成蛋白质序列。PSI-BLAST的特色是每次用profile搜索数据库后再利

5、用搜索的结果重新构建profile,然后用新的profile再次搜索数据库,如此反复直至没有新的结果产生为止。PSI-BLAST先用带空位的BLAST搜索数据库,将获得的序列通过多序列比对来构建第一个profile。PSI-BLAST自然地拓展了BLAST方法,能寻找蛋白质序列中的隐含模式,有研究表明这种方法可以有效的找到很多序列差异较大而结构功能相似的相关蛋白,甚至可以与一些结构比对方法,如threading相媲美。多序列比对顾名思义,多序列比对就是把两条以上可能有系统进化关系的序列进行比对的方法。目前对多序列比对的研究还在不断前进中,现有的大多数算法都基于渐进的比对的思想,在序列两两比对的

6、基础上逐步优化多序列比对的结果。进行多序列比对后可以对比对结果进行进一步处理,例如构建序列模式的profile,将序列聚类构建分子进化树等等。目前使用最广泛的多序列比对程序是CLUSTALW(它的PC版本是CLUSTALX)CLUSTALW是一种渐进的比对方法,先将多个序列两两比对构建距离矩阵,反应序列之间两两关系;然后根据距离矩阵计算产生系统进化指导树,对关系密切的序列进行加权;然后从最紧密的两条序列开始,逐步引入临近的序列并不断重新构建比对,直到所有序列都被加入为止。核酸与蛋白质结构和功能的预测分析人们获得各种核酸和蛋白质序列的目的是了解这个序列在生物体中充当了怎样的角色。例如,DNA序列

7、中重复片段、编码区、启动子、内含子/外显子、转录调控因子结合位点等信息;蛋白质的分子量、等电点、二级结构、三级结构、四级结构、膜蛋白的跨膜区段、酶的活性位点、以及蛋白质之间相互作用等结构和功能信息。虽然用实验的方法是多年以来解决这类问题的主要途径,但新的思路是利用已有的对生物大分子结构和功能特性的认识,用生物信息学的方法通过计算机模拟和计算来“预测”出这些信息或提供与之相关的辅助信息。由于生物信息学的特点,可以用较低的成本和较快的时间就能获得可靠的结果。近10年来生物学序列信息的爆炸性增长大大促进了各种序列分析和预测技术的发展,目前已经可以用理论预测的方法获得大量的结构和功能信息。要注意的是,

8、尽管各种预测方法都基于现有的生物学数据和已有的生物学知识,但在不同模型或算法基础上建立的不同分析程序有其一定的适用范围和相应的限制条件,因此最好对同一个生物学问题尽量多用几种分析程序,综合分析各种方法得到的结果和结果的可靠性。此外,生物信息学的分析只是为生物学研究提供参考,这些信息能提高研究的效率或提供研究的思路,但很多问题还需要通过实验的方法得到验证。针对核酸序列的预测方法针对核酸序列的预测就是在核酸序列中寻找基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。在此过程中,确认一段DNA序列是一个基因需要有多个证据的支持。一般而言,在重复片段频繁出现的区域里,基因编码区和调控

9、区不太可能出现;如果某段DNA片段的假想产物与某个已知的蛋白质或其它基因的产物具有较高序列相似性的话,那么这个DNA片段就非常可能属于外显子片段;在一段DNA序列上出现统计上的规律性,即所谓的“密码子偏好性”,也是说明这段DNA是蛋白质编码区的有力证据;其它的证据包括与“模板”序列的模式相匹配、简单序列模式如TATA Box等相匹配等。一般而言,确定基因的位置和结构需要多个方法综合运用,而且需要遵循一定的规则:对于真核生物序列,在进行预测之前先要进行重复序列分析,把重复序列标记出来并除去;选用预测程序时要注意程序的物种特异性;要弄清程序适用的是基因组序列还是cDNA序列;很多程序对序列长度也有

10、要求,有的程序只适用于长序列,而对EST这类残缺的序列则不适用。重复序列分析对于真核生物的核酸序列而言,在进行基因辨识之前都应该把简单的大量的重复序列标记出来并除去,因为很多情况下重复序列会对预测程序产生很大的扰乱,尤其是涉及数据库搜索的程序。常见的重复序列分析程序有CENSOR和RepeatMasker等,可以在Web界面上使用这些程序,或者用Email来进行。如果有大量序列需要处理,可以使用XBLAST程序,它可以从Internet上下载得到。XBLAST中以及包含了由程序作者收集整理的一些重复序列,此外还可以从Repbase中找到更多的重复序列。还可以把克隆载体也加入重复序列中,这样就可以在处理重复序列时顺便把克隆载体也一同除去。经处理的序列中重复序列所在位置会一律由“X”代替。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1