【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx

上传人:罗晋 文档编号:8697142 上传时间:2020-12-23 格式:DOCX 页数:22 大小:157.84KB
返回 下载 相关 举报
【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx_第1页
第1页 / 共22页
【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx_第2页
第2页 / 共22页
【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx_第3页
第3页 / 共22页
【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx_第4页
第4页 / 共22页
【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx》由会员分享,可在线阅读,更多相关《【物理】高中必备物理曲线运动技巧全解及练习题(含答案).docx(22页珍藏版)》请在三一文库上搜索。

1、【物理】高中必备物理曲线运动技巧全解及练习题( 含答案 )一、高中物理精讲专题测试曲线运动1 如图所示,倾角为45的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰好击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为e 点,重力加速度为g,不计空气阻力. 求:( 1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;( 3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】( 1)142mgr ;() ;( )Ek

2、2=6mg2F314【解析】【分析】【详解】( 1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r vat竖直方向: r1gt 22解得: vagr小滑块在 a 点飞出的动能 Ek1mva21mgr22(2)设小滑块在e 点时速度为 vm ,由机械能守恒定律得:1 mvm21 mva2mg 2r22在最低点由牛顿第二定律:Fmgmvm2r由牛顿第三定律得:F=F解得: F =6mg(3) bd 之间长度为L,由几何关系得:L221 r从 d 到最低点 e 过程中,由动能定理 mgHmg cos L1mvm22解得42142 如图所示,竖直圆形轨道固定在木板 B 上,木板小球 A 静止在木板

3、 B 上圆形轨道的左侧一质量为B 固定在水平地面上,一个质量为m 的子弹以速度v0 水平射入小球并停3m留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动圆形轨道半径为 R,木板B 和圆形轨道总质量为12m,重力加速度为g,不计小球与圆形轨道和木板间的摩擦阻力求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围32mv02(3) v04 2gR 或 45gR v0 8 2gR【答案】 (1)mv0(2) 16mg4R8【解析】本题考察完全非弹性碰撞、机械能与

4、曲线运动相结合的问题(1)子弹射入小球的过程,由动量守恒定律得:mv0 (m3m)v1由能量守恒定律得:Q1 mv0214mv1222代入数值解得: Q3 mv028(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式(m3m)v12得 F1(m3m) gR以木板为对象受力分析得F212mgF1根据牛顿第三定律得木板对水平的压力大小为F2木板对水平面的压力的大小F216mgmv024R(3)小球不脱离圆形轨有两种可能性: 若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:1m 3m v12m 3m gR2解得: v042gR 若小球能通过圆形轨道的最高点小球

5、能通过最高点有:(m 3m)v(m 3m) gR22由机械能守恒定律得:1 (m 3m)v122(m 3m)gR1 ( m 3m)v2222代入数值解得:v04 5gR要使木板不会在竖直方向上跳起,木板对球的压力:F312mg(m3m)v在最高点有:F3(m3m)gR23由机械能守恒定律得:1(m 3m)v122(m 3m)gR1( m 3m)v3222解得: v082gR综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是v04 2gR 或 4 5gRv08 2gR3 如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点 D点位于水平桌面最右

6、端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R0.45m 的圆环剪去左上角 127 的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P点到桌面右侧边缘的水平距离为1.5R若用质量 m1 0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m2 0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x 4t 2t 2,物块从 D 点飞离桌面后恰好由P 点沿切线落入圆轨道g 10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为m2 0.2kg 的物块能否沿圆轨道到达M 点:

7、(3)质量为 m2 0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】( 1) 2.25m/s (2)不能沿圆轨道到达 M 点 ( 3) 2.7J【解析】【详解】(1)设物块由 D 点以初速度 vD 做平抛运动,落到P 点时其竖直方向分速度为:vy2gR2 100.45 m/s 3m/svy4tan53 vD3所以: vD 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则2mgm v,R解得: vgR32 m/s2物块到达P 的速度:vPvD2vy2322.252 m/s 3.75m/s若物块能沿圆弧轨道到达M 点,其速度为vM ,由 D 到 M 的机械能

8、守恒定律得:1 m2vM21 m2vP2m2g 1 cos53R22可得: vM20.3375 ,这显然是不可能的,所以物块不能到达M 点(3)由题意知x 4t - 2t2,物块在桌面上过B 点后初速度vB 4m/s ,加速度为:a4m/s2则物块和桌面的摩擦力:m2 gm2 a可得物块和桌面的摩擦系数 :0.4质量 m1 0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:Epm1gxBC 0质量为 m20.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:Epm2 gxBC1 m2vB 22可

9、得, xBC2m在这过程中摩擦力做功:W1m2gx BC1.6J由动能定理, B 到 D 的过程中摩擦力做的功:W 21 m2vD21 m2v0222代入数据可得:W2 - 1.1J质量为 m20.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功WW1W22.7J即克服摩擦力做功为2.7 J.4 光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R 0.5 m,一个质量m 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接用手挡住小球不动,此时弹簧弹性势能 Ep 49 J,如图所示放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点 C, g 取 10 m/s 2求

10、:(1)小球脱离弹簧时的速度大小;(2)小球从 B 到 C 克服阻力做的功;(3)小球离开 C 点后落回水平面时的动能大小【答案】 (1) 7m / s ( 2) 24J ( 3) 25J【解析】【分析】【详解】(1)根据机械能守恒定律Ep1mv12 ?212Ep7m/s v m(2)由动能定理得 mg2R Wf 1 mv221 mv12 22小球恰能通过最高点,故 mgm v22R由得 Wf 24 J(3)根据动能定理:mg 2R Ek1 mv222解得: Ek25J故本题答案是: ( 1) 7m / s ( 2) 24J( 3) 25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,

11、根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度 ,从而根据动能定理求解从B 至 C 过程中小球克服阻力做的功 ;(3)小球离开 C 点后做平抛运动 ,只有重力做功,根据动能定理求小球落地时的动能大小5 如图所示,在平面直角坐标系xOy 内,第 象限的等腰直角三角形MNP 区域内存在垂直于坐标平面向外的匀强磁场,y 0 的区域内存在着沿y 轴正方向的匀强电场mv02E一质量为 m、电荷量为 q 的带电粒子从电场中 Q 点以速度 v0 水平向右射出,2qh经坐标

12、原点 O 射入第 象限已知粒子在第 象限运动的水平方向位移为竖直方向位移的2 倍,且恰好不从PN 边射出磁场已知MN 平行于 x 轴, N 点的坐标为 (2h,2h),不计粒子的重力,求:入射点Q 的坐标;磁感应强度的大小B;粒子第三次经过x 轴的位置坐标 .2212v02642gh(3),0【答案】 (1) 2h, h (2)qhmv0g【解析】【分析】带电粒子从电场中 Q 点以速度 v0 水平向右射出,在第 象限做的是类平抛运动,在第 I 象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动【详解】(1) 带电粒子在第象限做的是类平抛运动,带电粒子受的电场力为F1 运动时间为

13、t1 ,有F1qEmv02由题意得a12hF1qEmmx1v0t1y11at122解得mv02x1Eqy1mv022EqE mv0 2 2qhQ 的坐标2h, h(2) 带电粒子经坐标原点O 射入第 象限时的速度大小为v1vxv0vyat1mv0t1联立解得Eqvyv0v12v0由带电粒子在通过坐标原点O 时, x 轴和 y 轴方向速度大小相等可知,带电粒子在第I 象限以2v0 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从 PN 边射出磁场如下图所示,设圆周的半径为R,由牛顿第二定律则有22mv0q2v0BR2mv0R2qB由图知 EC 是中位线, O1 是圆心,

14、 D 点是圆周与PN 的切点,由几何知识可得,圆周半径2hR22解得221Bqhmv0(3) 带电粒子从磁场中射出后,又射入电场中,做类斜抛运动,速度大小仍是2v0 ,且抛射角是 450 ,如下图所示,根据斜抛运动的规律,有vx 22v0 cos450vy 22v0 sin450带电粒子在电场中飞行时间为t2 则有2vy12v0t2gg带电粒子在电场中水平方向飞行距离为x2 有2v02x2vx2t2带电粒子在p2 点的坐标由几何知识可知p2 点的坐标是g( 4h 2h 2 , 0)2 2带电粒子在p1 点的坐标是2v02642 gh,0g【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几

15、何知识来计算6 如图是节水灌溉工程中使用喷水龙头的示意图。喷嘴离地面高为h ,将水连续不断地以恒定速度水平喷出,其喷灌的水平射程为10h ,喷嘴横截面积为S(设同一横截面上各点水流速度大小均相同),水的密度为,空气阻力忽略不计。重力加速度为g。(1)求空中水的体积V;(2)假如我们只研究其中一个质量为m 的水滴,不计水滴间的相互影响,求它从喷嘴水平喷出后在空中运动过程中的动量变化量p;( 3)假如水击打在水平地面上速度立即变为零,求水击打地面时竖直向下的平均作用力大小 F。【答案】( 1) 10hs (2) m 2gh ( 3)10hSg【解析】【详解】x10 h(1)水喷出时速度:v05 2

16、gh2h2hgg2h则空中水的体积:Vv0S10hs(2)由动量定理得:P mgt mg2h m 2ghg10hS2gh(3)向下为正,在竖直向对由动量定理:F2hg 10hSg(因时间短,则与地面作用时间内重力可略)则由牛顿第三定律可得对地面的力为10hSg。7 如图所示,圆弧轨道AB 是在竖直平面内的1 圆周, B 点离地面的高度 h=0.8m,该处切4线是水平的,一质量为m=200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D点已知小物块落地点D 到 C点的距离为x=4m,重力加速度为g=10m/ s

17、2求:( 1)圆弧轨道的半径( 2)小球滑到 B 点时对轨道的压力【答案】 (1)圆弧轨道的半径是 5m( 2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下【解析】( 1)小球由 B 到 D 做平抛运动,有: h= 1 gt22Bx=v t解得: vB xg1010m / s420.82hA 到 B 过程,由动能定理得:1mvB2-0mgR=2解得轨道半径R=5m(2)在 B 点,由向心力公式得: Nmgm vB2R解得: N=6N根据牛顿第三定律,小球对轨道的压力N =N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合

18、力提供向心力,运用运动的分解法进行研究平抛运动8 如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy,其坐标原点O 与平台右侧距离为d=1.2m 。平台足够宽,高为 h=0.8m ,长为 L=3.3m。一个质量m1=0.2kg 的小球以v0=3m/s 的速度沿x 轴运动,到达 O 点时,给小球施加一个沿y 轴正方向的水平力 F1,且 F1=5y( N)。经一段时间,小球到达平台上坐标为(1.2m , 0.8m)的 P 点时,撤去外力 F1。在小球到达 P 点的同时,平台与地面相交处最内侧的M 点,一个质量 m2=0.2kg 的滑块以速度

19、 v 在水平地面上开始做匀速直线运动,滑块与地面间的动摩擦因数=0.5,由于摩擦力的作用,要保证滑块做匀速运动需要给滑块一个外力F2,最终小球落在N 点时恰好与滑块相遇,小球、滑块均视为质点, g10m / s2 , sin370.6, cos370.8 。求:( 1)小球到达 P 点时的速度大小和方向;( 2) M 、N 两点间的距离 s 和滑块速度 v 的大小;( 3)外力 F2 最小值的大小(结果可用根式表示)【答案】( 1) 5m/s 方向与 x 轴正方向成 53( 2)1.5m; 3.75m/s (3) 2 5 N5【解析】( 1)小球在平台上做曲线运动,可分解为沿x 轴方向的匀速直

20、线运动和沿y 轴方向的变加速运动,设小球在P 点受到 vp 与 x 轴夹角为从 O 点到 P 点,变力 F 做功y p50.80.8J1.6 J12根据动能定理有 W1 m1vP21 m1v02 ,解得 vp5m / s22根据速度的合成与分解有v0vp cos,得53,小球到达 P 点时速度与 x 轴正方向成53(2)小球离开 P 点后做平抛运动,根据平抛运动规律有h1 gt 2 ,解得 t=0.4s2小球位移在水平面内投影lvp t2m设 P 点在地面的投影为P ,则 P MLyP2.5m由几何关系可得 s2P M 2l 22lP Mcos,解得 s=1.5m滑块要与小球相遇,必须沿MN

21、连线运动,由 s vt ,得 v3.75m / s(3)设外力 F2 的方向与滑块运动方向(水平方向)的夹角为,根据平衡条件水平方向有:F2 cosf ,其中 fN ,竖直方向有 NF2sinm2 g联立解得 F2m2 gcossin由数学知识可得F2m2 g,其最小值 F2minm2 g2 5 N 。12 sin1259如图所示,某同学在一辆车上荡秋千,开始时车轮被锁定,车的右边有一个和地面相平的沙坑,且右端和沙坑的左边缘平齐;当同学摆动到最大摆角=60时,车轮立即解除锁定,使车可以在水平地面无阻力运动,该同学此后不再做功,并可以忽略自身大小,已知秋千绳子长度L=4.5m,该同学和秋千支架的

22、质量M=200kg ,重力加速度g=10m/s 2,试求:( 1)该同学摆到最低点时的速率;( 2)在摆到最低点的过程中,绳子对该同学做的功;( 3)该同学到最低点时,顺势离开秋千板,他落入沙坑的位置距离左边界多远?已知车辆长度 s=3.6m,秋千架安装在车辆的正中央,且转轴离地面的高度H=5.75m.【答案】( 1) 6m/s ;( 2) -225J;( 3) 0.421m【解析】(1)人向下运动的过程中,人与车在水平方向的动量守恒,选取向右为正方向,则:人向下运动的过程中系统的机械能守恒,则:代入数据,联立得:(2)对人向下运动的过程中使用动能定理,得:代入数据解得:(3)人在秋千上运动的

23、过程中,人与车组成的系统在水平方向的平均动量是守恒的,则:由于运动的时间相等,则:又:,联立得:,即车向左运动了人离开秋千后做平抛运动,运动的时间为:人沿水平方向的位移为:所以人的落地点到沙坑边缘的距离为:代入数据,联立得:。点睛:该题中涉及的过程多,用到的知识点多,在解答的过程中要注意对情景的分析,尤其要注意人在秋千上运动的过程中,车不是静止的,而是向左运动。10 如图所示,水平绝缘轨道AB长L=4m,离地高h=1.8mAB间存在竖直向上的匀强, 、电场。一质量A 点以 v0=6m/s 的初速m=0.1kg,电荷量 q=-5 105C 的小滑块,从轨道上的度向右滑动,从B 点离开电场后,落在

24、地面上的C 点。已知 C、B 间的水平距离 x=2.4m ,滑块与轨道间的动摩擦因数=0.2,取 g=10m/s 2,求:( 1)滑块离开 B 点时速度的大小;( 2)滑块从 A 点运动到 B 点所用的时间;( 3)匀强电场的场强 E 的大小【答案】( 1) 4m/s ;( 2) 0.8s;( 3) 5103 N/C【解析】【详解】(1)从 B 到 C 过程中,有12hgtxvBt解得vB 4m/s(2)从 A 到 B 过程中,有vAvBxABt解得t 0.8s(3)在电场中运动过程中,受力如图由牛顿第二定律,得( mg Eq) =m由运动学公式,有vB2 vA2 2x解得3E 5 10N/C

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1