物理曲线运动练习题含答案含解析.docx

上传人:苏美尔 文档编号:8698216 上传时间:2020-12-23 格式:DOCX 页数:13 大小:436.82KB
返回 下载 相关 举报
物理曲线运动练习题含答案含解析.docx_第1页
第1页 / 共13页
物理曲线运动练习题含答案含解析.docx_第2页
第2页 / 共13页
物理曲线运动练习题含答案含解析.docx_第3页
第3页 / 共13页
物理曲线运动练习题含答案含解析.docx_第4页
第4页 / 共13页
物理曲线运动练习题含答案含解析.docx_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《物理曲线运动练习题含答案含解析.docx》由会员分享,可在线阅读,更多相关《物理曲线运动练习题含答案含解析.docx(13页珍藏版)》请在三一文库上搜索。

1、(物理)物理曲线运动练习题含答案含解析一、高中物理精讲专题测试曲线运动1 如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m小球A 静止在木板B 上圆形轨道的左侧一质量为m 的子弹以速度v0 水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动圆形轨道半径为 R,木板B 和圆形轨道总质量为12m,重力加速度为g,不计小球与圆形轨道和木板间的摩擦阻力求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围32mv024

2、2gR 或 45gR v0 8 2gR【答案】 (1)mv0(2) 16mg(3) v084R【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题(1)子弹射入小球的过程,由动量守恒定律得:mv0 (m3m)v1由能量守恒定律得:Q1 mv021 4mv1222代入数值解得: Q3mv028(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式(m3m)v12得 F1(m3m) gR以木板为对象受力分析得F212mgF1根据牛顿第三定律得木板对水平的压力大小为F2木板对水平面的压力的大小F216mgmv024R(3)小球不脱离圆形轨有两种可能性: 若小球滑行

3、的高度不超过圆形轨道半径R由机械能守恒定律得:1m 3m v12m 3m gR2解得: v042gR 若小球能通过圆形轨道的最高点小球能通过最高点有:(m 3m)v(m 3m) gR22由机械能守恒定律得:1 (m 3m)v122(m 3m)gR1 ( m 3m)v2222代入数值解得:v04 5gR要使木板不会在竖直方向上跳起,木板对球的压力:F312mg(m3m)v在最高点有:F3(m3m)gR23由机械能守恒定律得:1 (m 3m)v122(m 3m)gR1 ( m 3m)v3222解得: v082gR综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是v04

4、2gR 或 4 5gRv08 2gR2 如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数=0.2现用水平向右推力F=1.0N 作用于铁球,作用一段时间后撤去。铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道 BCD的 B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点 D已知 BOC=37, A、 B、 C、 D 四点在同一竖直平面内,水平桌面离B 端的竖直高度 H=0.45m ,圆弧轨道半径R=0.5m ,C 点为圆弧轨道的最低点,求:(取sin37 =0.6,cos37 =0.

5、8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小vD;(2)若铁球以 vC=5.15m/s 的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小FC;(计算结果保留两位有效数字)(3)铁球运动到B 点时的速度大小vB;(4)水平推力 F 作用的时间t 。【答案】 (1)铁球运动到圆弧轨道最高点D 点时的速度大小为5 m/s ;(2)若铁球以 vC=5.15m/s 的速度经过圆弧轨道最低点 C,求此时铁球对圆弧轨道的压力大小为 6.3N;(3)铁球运动到B 点时的速度大小是5m/s ;(4)水平推力 F 作用的时间是0.6s。【解析】【详解】(1)小球恰好通过 D 点时,重力提供向心力

6、,由牛顿第二定律可得:mvD2mgR可得: vD5m / s(2)小球在 C 点受到的支持力与重力的合力提供向心力,则:代入数据可得:F=6.3N由牛顿第三定律可知,小球对轨道的压力:FC=F=6.3N2FmgmvC(3)小球从 A 点到 B 点的过程中做平抛运动,根据平抛运动规律有:2ghvy2得: vy=3m/svBvy3小球沿切线进入圆弧轨道,则:sin375m/s0.6(4)小球从 A 点到 B 点的过程中做平抛运动,水平方向的分速度不变,可得:vA vBcos3750.8 4m / s小球在水平面上做加速运动时:Fmg ma1可得: a18m / s2小球做减速运动时:mgma2可得

7、: a22m / s2由运动学的公式可知最大速度:vma1t ; vAvm a2t2又: xvm tvmvA t222联立可得: t0.6s3 如图所示,在竖直平面内有一倾角=37的传送带BC已知传送带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传送带,滑块与传送带间的动摩擦因数=0.5g=10m/s2, sin37 = 0.6,cos,取重力加速度37=0.8。求:(1)滑块水平抛出时的速度v0;(2)在

8、滑块通过传送带的过程中,传送带和滑块克服摩擦力做的总功W.【答案】 (1) v0 =4m/s (2)W=8J【解析】【详解】(1) 滑块做平抛运动在 B 点时竖直方向的分速度为:平抛后恰好沿BC 方向滑人传送带,可知B 点的平抛速度方向与传送带平行,由几何关系及速度分解有:解得:(2) 滑块在 B 点时的速度大小为滑块从 B 点运动到 C 点过程中,由牛顿第二定律有:可得加速度设滑块到达C 点时的速度大小为vC,有:解得:此过程所经历的时间为:故滑块通过传送带的过程中,以地面为参考系,滑块的位移传送带的位移 x2=vt=4m;传送带和滑块克服摩擦力所做的总功为:代入数据解得:【点睛】此题需注意

9、两点, (1)要利用滑块沿 BC 射入来求解滑块到体做的功时要以地面为参考系来计算位移。x1=L=6m,B 点的速度; (2) 计算摩擦力对物4 如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。小车上表面由光滑圆弧轨道BC和水平粗糙轨道CD组成, BC与 CD相切于 C,圆弧BC 所对圆心角 37,圆弧半径R=2.25m,滑动摩擦因数=0.48。质量 m=1kg 的小物块从某一高度处的A 点以 v0 4m/s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,最终与小车保持相对静止。取g 10m/s 2, sin37 =0.6,忽略空气阻力,求:( 1

10、) A、B 间的水平距离;( 2)物块通过 C 点时,轨道对物体的支持力;( 3)物块与小车因摩擦产生的热量。【答案】 (1) 1.2m (2) FN25.1N ( 3) 13.6J【解析】【详解】(1)物块从 A到 B由平抛运动的规律得 :gttan=v0x= v0t得x=1.2m(2)物块在 B 点时,由平抛运动的规律得:v0vBcos物块在小车上 BC段滑动过程中,由动能定理得:11mgR(1 cos) mvC2mvB222在 C 点对滑块由牛顿第二定律得FNmgm vC2R联立以上各式解得: FN 25.1N( 3)根据牛顿第二定律,对滑块有 mg ma1 ,对小车有 mgMa 2当滑

11、块相对小车静止时,两者速度相等,即vC a1t 1 a2t 1由以上各式解得 t134 s,6此时小车的速度为va2t 134 m / s51212物块在 CD段滑动过程中由能量守恒定律得:mvC( M m) v + Q22解得: Q=13.6J5 如图所示,竖直平面内有一光滑的直角细杆MON ,其中 ON 水平, OM 竖直,两个小物块 A 和 B 分别套在 OM 和 ON 杆上,连接 AB 的轻绳长为 L=0.5m,现将直角杆 MON 绕过 OM 的轴 O1O2 缓慢地转动起来已知 A 的质量为 m1=2kg,重力加速度 g 取 10m/s 2。( 1)当轻绳与 OM 的夹角 =37时,求

12、轻绳上张力 F。( 2)当轻绳与 OM 的夹角 =37时,求物块 B 的动能 EkB。( 3)若缓慢增大直角杆转速,使轻绳与 OM 的夹角 由 37缓慢增加到 53,求这个过程中直角杆对 A 和 B 做的功 WA、 WB。【答案】( 1) F25N( 2) E2.25J ( ) W0 ,61kBAWBJ312【解析】【详解】(1)因 A 始终处于平衡状态,所以对A 有F cosm1 g得 F 25N(2)设 B 质量为 m2 、速度为 v 、做圆周运动的半径为r ,对 B 有F sinm2v2rrL sinEkB1 m2v22m1gL sin2得 EkB2cosEkB2.25J(3)因杆对 A

13、 的作用力垂直于A 的位移,所以 WA0由( 2)中的m1gL sin253 时, B 的动能为 EkB16EkB知,当J2cos3杆对 B 做的功等于 A 、 B 组成的系统机械能的增量,故WBEkBEkB m1 gh 其中 hL cos37 L cos53得 WB61J126 如图所示,圆弧轨道AB 是在竖直平面内的1 圆周, B 点离地面的高度 h=0.8m,该处切4线是水平的,一质量为m=200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D点已知小物块落地点D 到 C点的距离为x=4m,重力加速度为

14、g=10m/ s2求:( 1)圆弧轨道的半径( 2)小球滑到 B 点时对轨道的压力【答案】 (1)圆弧轨道的半径是 5m( 2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下【解析】( 1)小球由 B 到 D 做平抛运动,有: h= 1 gt22x=vBt解得: vB xg104210m / s2h0.8A 到 B 过程,由动能定理得:1mgR= mvB2-02解得轨道半径R=5m(2)在 B 点,由向心力公式得:Nmgm vB2R解得: N=6N根据牛顿第三定律,小球对轨道的压力N =N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周

15、运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动7 如图甲所示,轻质弹簧原长为2L,将弹簧竖直放置在水平地面上,在其顶端将一质量为 5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L现将该弹簧水平放置,如图乙所示一端固定在A 点,另一端与物块P接触但不连接 AB是长度为 5L 的水平轨道, B端与半径为L 的光滑半圆轨道 BCD相切,半圆的直径BD在竖直方向上物块P与 AB间的动摩擦因数0.5,用外力推动物块,将弹簧压缩至长度为L处,然后释放,PP P开始沿轨道运动,重力加速度为g (1)求当弹簧压缩至长度为L 时的弹性势能Ep ;(2)若P的质量为 m ,求物块离开圆轨道

16、后落至上的位置与B点之间的距离;AB(3)为使物块 P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围【答案】(1)EmgL(3)5P5(2)S 22L53m Mm2【解析】【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设 P到达 B 点时的速度大小为,由能量守恒定律得:设 P 到达 D点时的速度大小为,由机械能守恒定律得:物体从 D点水平射出,设P 落回到轨道AB所需的时间为S 2 2L( 3)设 P的质量为 M,为使 P能滑上圆轨道,它到达 B 点的速度不能小于零得 5mgL4 MgLM5 m2要使 P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨

17、道的中点C,得1 MvB2MgL2Ep1 Mv B224MgL8 如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m时到达 B 点,此时撤去推力F、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g10 m/s 2,求:(1

18、)水平推力 F 的大小;(2)滑块到达 D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】( 1) 1N( 2)( 3) t 1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C 点,则有:m1g m1从 A 到 C 由动能定理得:Fx m1g2R m1 vC2 0代入数据联立解得:F 1 N(2)从 A 到 D 由动能定理得:Fx m1vD2代入数据解得:vD 5 m/s(3)滑块滑到木板上时,对滑块:1m1g m1a1,解得:a1 1g 3 m/s 2对木板有:1m1g 2(m1 m2)gm2a2,代入数据解

19、得:a2 2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v 共 vD a1 tv 共 a2t,代入数据解得:t 1 s此时滑块的位移为:x1 vDta1t2 ,木板的位移为:x2 a2t2, Lx1 x2,代入数据解得:L 2.5 mv 共 2 m/sx2 1 m达到共同速度后木板又滑行x,则有:v 共 2 22gx,代入数据解得:x 1.5 m木板在水平地面上最终滑行的总位移为:x 木 x2 x2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解9 如图所示,在

20、光滑水平桌面 EAB上有质量为 m2 kg 的小球 P 和质量为 M 1 kg 的小球 Q, P、 Q 之间压缩一轻弹簧 (轻弹簧与两小球不拴接 ),桌面边缘 E 处放置一质量也为 M 1 kg 的橡皮泥球 S,在 B 处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、 Q 两小球被轻弹簧弹出,小球P 与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q 与弹簧分离后与桌面边缘的橡皮泥球S 碰撞后合为一体飞出,落在水平地面上的D 点。已知水平桌面高为h 0.2 m, D点到桌面边缘的水平距离为 x 0.2 m,重力加速度为g 10 m/s 2,求:(1)小球P

21、 经过半圆形轨道最低点B 时对轨道的压力大小NB;(2)小球Q 与橡皮泥球S 碰撞前瞬间的速度大小vQ;(3)被压缩的轻弹簧的弹性势能Ep。【答案】 (1)120N(2)2 m/s(3)3 J【解析】【详解】(1)小球 P 恰好能通过半圆形轨道的最高点C,则有2mg m vCR解得vCgR对于小球P,从 BC,由动能定理有 2mgR 1 mvC2 1 mvB222解得vB5gR在 B 点有NB mg m解得vB2RNB 6mg120 N由牛顿第三定律有NB NB 120 N(2)设 Q 与 S 做平抛运动的初速度大小为v,所用时间为t,根据公式h 1 gt 2,得2t 0.2 s根据公式x v

22、t,得v1 m/s碰撞前后Q 和 S组成的系统动量守恒,则有Mv Q2Mv解得vQ 2 m/s( 3) P、 Q 和弹簧组成的系统动量守恒,则有mvP Mv Q解得vP 1 m/s对 P、 Q 和弹簧组成的系统,由能量守恒定律有Ep 1 mvP2 1 MvQ222解得Ep 3 J10 摄制组在某大楼边拍摄武打片,要求特技演员从地面飞到屋顶,为此导演在某房顶离地高 H=8m 处架设了轻质轮轴如题图所示,连汽车的轻质钢缆绕在轴上,连演员的轻质钢缆绕在轮上,轮和轴固连在一起可绕中心固定点无摩擦转动汽车从图中A 处由静止开始加速运动,前进s=6m 到 B 处时速度为v=5m/s 人和车可视为质点,轮和

23、轴的直径之比为 3: 1,轮轴的大小相对于H 可忽略,钢缆与轮轴之间不打滑,g 取 10m/s 2提示:连接汽车的钢缆与连接演员的钢缆非同一根钢缆试求:(1)汽车运动到B 处时演员的速度大小:(2)汽车从 A 运动到 B 的过程演员上升的高度;(3)若汽车质量M=1500kg ,特技演员的质量m=60kg,且在该过程中汽车受地面阻力大小恒为 1000N,其余阻力不计,求汽车从A 运动到【答案】 (1)9m/s( 2)6m( 3) 30780JB 的过程中汽车发动机所做的功【解析】 (1)将汽车的速度v 分解为如图所示的情况,有:,解得: =37则得绳子的伸长速度v1=vsin37 =5 0.6=3m/s,由于轮轴的角速度相等设人的上升速度为v3,轮的半径为R,轴的半径为r,则有,得 v3=9 m/s ;(2)由图可知,在这一过程中,连接轨道车的钢丝上升的距离为:l=-H=2m轮和轴的直径之比为 3: 1所以演员上升的距离为 h=32m=6m(3)汽车发动机所做的功转化为人的动能,人的重力势能,车的动能,及车与地面的摩擦力生热因此 : W= mv 人 2+mgh+ Mv 2+fs=30780J;点睛:考查运动的合成与分解,掌握角速度与线速度的关系,理解功能关系的应用,同时注意:轮和轴的角速度相同,根据轮和轴的直径之比知道线速度关系掌握速度分解找出分速度和合速度的关系

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1