高考物理试卷物理曲线运动题分类汇编.docx

上传人:罗晋 文档编号:8699088 上传时间:2020-12-23 格式:DOCX 页数:11 大小:169.76KB
返回 下载 相关 举报
高考物理试卷物理曲线运动题分类汇编.docx_第1页
第1页 / 共11页
高考物理试卷物理曲线运动题分类汇编.docx_第2页
第2页 / 共11页
高考物理试卷物理曲线运动题分类汇编.docx_第3页
第3页 / 共11页
高考物理试卷物理曲线运动题分类汇编.docx_第4页
第4页 / 共11页
高考物理试卷物理曲线运动题分类汇编.docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《高考物理试卷物理曲线运动题分类汇编.docx》由会员分享,可在线阅读,更多相关《高考物理试卷物理曲线运动题分类汇编.docx(11页珍藏版)》请在三一文库上搜索。

1、高考物理试卷物理曲线运动题分类汇编一、高中物理精讲专题测试曲线运动1 已知某半径与地球相等的星球的第一宇宙速度是地球的1倍地球表面的重力加速度2为 g 在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动小球质量为m ,绳长为 L ,悬点距地面高度为H 小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)1(2)s2 g0(3)T1s2g星 = gv01 mg04HL4042( H L) L【解析】【分析】【详解】(1)由万有引力等于向心力

2、可知G Mmm v2R2RG MmmgR2v2可得 gR则 g星 1 g0 4(2)由平抛运动的规律: HL1 g星t 22s v0t解得 vs2g004H L2(3)由牛顿定律 ,在最低点时 : Tmg星 m vL解得 : T11s2mg042( HL )L【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度 g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键2 如图是节水灌溉工程中使用喷水龙头的示意图。喷嘴离地面高为h ,将水连续不断地以恒定速度水平喷出,其喷灌的水平射程为10h ,喷嘴横截面积为S(设同一横截面上

3、各点水流速度大小均相同),水的密度为,空气阻力忽略不计。重力加速度为g。( 1)求空中水的体积 V;( 2)假如我们只研究其中一个质量为m 的水滴,不计水滴间的相互影响,求它从喷嘴水平喷出后在空中运动过程中的动量变化量p;( 3)假如水击打在水平地面上速度立即变为零,求水击打地面时竖直向下的平均作用力大小 F。【答案】( 1) 10hs (2) m 2gh ( 3)10hSg【解析】【详解】x10 h(1)水喷出时速度:v05 2gh2h2hgg2h则空中水的体积:Vv0S10hs(2)由动量定理得:P mgt mg2h m 2ghg10hS2gh(3)向下为正,在竖直向对由动量定理:F2hg

4、 10hSg(因时间短,则与地面作用时间内重力可略)则由牛顿第三定律可得对地面的力为10hSg。,l,质量为 m 的小球与两根不可伸长的轻绳a,b 连接 ,两轻绳的另一端分3 如图所示 半径为4别固定在一根竖直光滑杆的A,B 两点上 .已知 A,B 两点相距为 l,当两轻绳伸直后A、B 两点到球心的距离均为l,重力加速度为g(1)装置静止时 ,求小球受到的绳子的拉力大小T;(2)现以竖直杆为轴转动并达到稳定(轻绳a,b 与杆在同一竖直平面内)小球恰好离开竖直杆时,竖直杆的角速度0 多大 ?轻绳 b 伸直时 ,竖直杆的角速度多大?【答案】 (1)415015g2gT15mg (2)=215ll【

5、解析】【详解】(1)设轻绳 a 与竖直杆的夹角为15cos4对小球进行受力分析得mgTcos解得:T 4 15 mg15(2)小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。可知小球做圆周运动的半径为lr=4mg tanm 02 r解得 :0= 215g15l轻绳 b 刚伸直时,轻绳a 与竖直杆的夹角为60,可知小球做圆周运动的半径为rl sin60mg tan 60m2r解得 :2g=l轻绳 b 伸直时,竖直杆的角速度2gl4 如图所示,水平传送带 AB 长 L=4m,以 v0=3m/s 的速度顺时针转动,半径为 R=0.5m 的光滑半圆轨道 BCD 与传动带平滑相接于 B 点,将质量为

6、m=1kg 的小滑块轻轻放在传送带的左端已,知小滑块与传送带之间的动摩擦因数为=0.3,取 g=10m/s 2,求 :(1)滑块滑到 B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大【答案】 (1) 28N.( 2) 7m/s【解析】【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;( 2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度 .【详解】(1)滑块在传送带上运动的加速度为a=g

7、=3m/s2;则加速到与传送带共速的时间tv01s 运动的距离: x1 at 21.5m ,a2以后物块随传送带匀速运动到B 点,到达 B 点时,由牛顿第二定律:F mg m v02R解得 F=28N,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m vD2R解得 vD= 5 m/s ;由 B 到 D,由动能定理:1mvB2 1mvD2mg 2R22解得 vB=5m/sv0可见,滑块从左端到右端做减速运动,加速度为a=3m/s2 ,根据 vB2A2=v -2aL解得 vA=7m/s5 如图, AB为倾角37的光滑斜面轨道, B

8、P 为竖直光滑圆弧轨道,圆心角为143 、半径 R0.4m ,两轨道相切于B 点, P 、 O 两点在同一竖直线上,轻弹资一端固定在 A 点另一自由端在斜面上C 点处,现有一质量 m 0.2 kg 的小物块(可视为质点)在外力作用下将弹簧缓慢压缩到D 点后(不栓接)静止释放,恰能沿轨道到达P 点,已知CD 0.2m 、 sin370.6 、 cos370.8 , g 取 10 m/s2 求:( 1)物块经过 P 点时的速度大小 v p ;( 2)若 BC 1.0m ,弹簧在 D 点时的弹性势能 EP ;( 3)为保证物块沿原轨道返回, BC 的长度至少多大【答案】 (1) 2m/s (2)32

9、.8J (3)2.0m【解析】【详解】(1)物块恰好能到达最高点P,由重力提供圆周运动的向心力,由牛顿第二定律得:mg=m解得:v2pRvPgR100.42m/s(2)物块从D 到 P 的过程,由机械能守恒定律得:12Ep=mg( sDC+sCB)sin37 +mgR( 1+cos37 )+mvP2代入数据解得:Ep=32.8J( 3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:Ep =mg( sDC+sCB) sin37 +mgR( 1+cos37 )解得:sCB=2.0m点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的

10、物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力6 如图所示,四分之一光滑圆弧轨道AO 通过水平轨道OB 与光滑半圆形轨道BC 平滑连接, B、 C 两点在同一竖直线上,整个轨道固定于竖直平面内,以O 点为坐标原点建立直角坐标系 xOy。一质量m=1kg 的小滑块从四分之一光滑圆弧轨道最高点A 的正上方E 处由静止释放, A、 E 间的高度差h=2.7m ,滑块恰好从A 点沿切线进入轨道,通过半圆形轨道BC的最高点 C 时对轨道的压力F=150N,最终落到轨道上的D 点 (图中未画出 )。已知四分之一圆弧轨道 AO 的半径 R=1.5m,半圆轨道 BC 的半径 r=0.4m,水平轨道

11、 OB 长 l=0.4m ,重力加速度 g=10m/s2 。求:(1)小滑块运动到C 点时的速度大小;(2)小滑块与水平轨道OB 间的动摩擦因数;(3)D 点的位置坐标.【答案】 (1) vC8m/s (2)0.5 (3) x 1.2m , y 0.6m【解析】【详解】(1)滑块在C 点时,对滑块受力分析,有FmgmvC r2解得: vC8m / s(2)滑块从E 点到 C 点过程,由动能定理可知:mghR 2rmgl1mvc22解得:0.5(3)小滑块离开C 点后做平抛运动,若滑块落到水平轨道,则2r1gt 2 , svCt2解得: s3.2m l 0.4m所以滑块落到四分之一圆弧轨道上,设

12、落点坐标为x, y ,则有:2ry1 gt 22lxvCtx2R2R2y解得: x1.2m, y0.6m7 如图所示,在光滑水平桌面 EAB上有质量为 m2 kg 的小球 P 和质量为 M 1 kg 的小球 Q, P、 Q 之间压缩一轻弹簧 (轻弹簧与两小球不拴接 ),桌面边缘 E 处放置一质量也为 M 1 kg 的橡皮泥球 S,在 B 处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧, P、 Q 两小球被轻弹簧弹出,小球P 与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球 Q 与弹簧分离后与桌面边缘的橡皮泥球S 碰撞后合为一体飞出,落在水平地面上的 D 点。已

13、知水平桌面高为 h 0.2 m, D 点到桌面边缘的水平距离为 x 0.2 m,重力加速度为 g 10 m/s 2,求:(1)小球 P 经过半圆形轨道最低点B 时对轨道的压力大小NB;(2)小球 Q 与橡皮泥球S 碰撞前瞬间的速度大小vQ;(3)被压缩的轻弹簧的弹性势能Ep。【答案】 (1)120N(2)2 m/s(3)3 J【解析】【详解】(1)小球 P 恰好能通过半圆形轨道的最高点C,则有2mg m vCR解得vCgR对于小球P,从 BC,由动能定理有 2mgR 1 mvC2 1 mvB222解得vB5gR在 B 点有2NB mg m vBR解得NB 6mg120 N由牛顿第三定律有NB

14、NB 120 N(2)设Q 与S 做平抛运动的初速度大小为v,所用时间为t,根据公式h 1gt 2,得2t 0.2 s根据公式x vt,得v1 m/s碰撞前后Q 和 S组成的系统动量守恒,则有Mv Q2Mv解得vQ 2 m/s( 3) P、 Q 和弹簧组成的系统动量守恒,则有mvP Mv Q解得vP 1 m/s对 P、 Q 和弹簧组成的系统,由能量守恒定律有Ep 1 mvP2 1 MvQ222解得Ep 3 J8 如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内现有

15、一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处已知滑板的质量是小物块质量的3 倍,小物块滑至B点时对轨道的压力为其重力的3 倍, OA 与竖直方向的夹角为=60,小物块与水平轨道间的动摩擦因数为=0.3,重力加速度2,不考虑空气阻力作用,求:g 取 10 m / s( 1)水平轨道 BC 的长度 L;( 2) P 点到 A 点的距离 h【答案】 (1) 2.5R(2) 2 R3【解析】【分析】(1)物块从A 到 B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B

16、点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;( 2)从 P 到 A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到 B 的方程;联立求解h【详解】2(1)在B 点时,由牛顿第二定律:N BmgmvB,其中NB=3mg;R解得 vB2gR ;从 B 点向 C 点滑动的过程中,系统的动量守恒,则mvB( m 3m)v ;由能量关系可知:mgL1 mvB21 (m3m)v222联立解得: L=2.5R;(2)从 P 到 A 点,由机械能守恒:1mvA2;mgh=2在 A 点: vA1 vA sin 600 ,从 A

17、 点到 B 点: 1 mvA21mgR(1cos60 0 )1 mvB222联立解得2h= R39 如图所示, A、 B 两球质量均为m,用一长为l 的轻绳相连, A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态现给B 球水平向右的初速度 v0,经一段时间后 B球第一次到达最高点,此时小球位于水平横杆下方l/2 处(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T;(2)B 球第一次到达最高点时,A 球的速度大小v1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W【答案】( 1) mg+mv02v02gl( 3)mgl mv02l( 2)

18、v142【解析】【详解】(1) B 球刚开始运动时,A 球静止,所以B 球做圆周运动对 B 球: T-mg=m v02l2 v(2) B 球第一次到达最高点时,A、 B 速度大小、方向均相同,均为v1以 A、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到点,根据机械能守恒定律,B 球第一次到达最高1 mv02mgl1 mv121 mv12mg l2222得: v1v02gl2(3)从开始到 B 球第一次到达最高点的过程,对B 球应用动能定理W-mg l1 mv12 1 mv02222得: W= mglmv02410 如图所示,AB 为倾角37的斜面轨道,BP 为半径R=1m的竖直光滑

19、圆弧轨道,O为圆心,两轨道相切于B 点, P、 O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB部分粗糙,CB长L 1.25m,物块与斜面间的动摩擦因数为 0.25,现有一质量m=2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放 (不栓接 ),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍, sin370.6,cos370.8 , g=10m/s 2. 求:(1)物块到达 P 点时的速度大小vP;(2)物块离开弹簧时的速度大小vC;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值vm.【答案】 (1) vP5m/s (2)vC=9m/s (3)vm6m/s【解析】【详解】(1)在 P 点,根据牛顿第二定律:mg N Pm vP2R解得 :vP2.55m/sgR(2)由几何关系可知BP 间的高度差hBPR(1cos37 )物块 C 至 P 过程中,根据动能定理:mgL sin37mghmgLcos37 = 1 mv21 mv2BP2P2C联立可得: vC=9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的 E 点,物块 C 至 E 过程中根据动能定理:mgL cos37mgLsin37mgRsin 53 =01 mv22m解得: vm6m/s

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1