最新物理试卷物理动能与动能定理题分类汇编.docx

上传人:罗晋 文档编号:8699616 上传时间:2020-12-23 格式:DOCX 页数:15 大小:459.76KB
返回 下载 相关 举报
最新物理试卷物理动能与动能定理题分类汇编.docx_第1页
第1页 / 共15页
最新物理试卷物理动能与动能定理题分类汇编.docx_第2页
第2页 / 共15页
最新物理试卷物理动能与动能定理题分类汇编.docx_第3页
第3页 / 共15页
最新物理试卷物理动能与动能定理题分类汇编.docx_第4页
第4页 / 共15页
最新物理试卷物理动能与动能定理题分类汇编.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《最新物理试卷物理动能与动能定理题分类汇编.docx》由会员分享,可在线阅读,更多相关《最新物理试卷物理动能与动能定理题分类汇编.docx(15页珍藏版)》请在三一文库上搜索。

1、最新物理试卷物理动能与动能定理题分类汇编一、高中物理精讲专题测试动能与动能定理1 如图所示,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A 点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;( 3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。【答案】 (1) 1

2、0.5J( 2)3J( 3) 0.3mR0.42m或 0R0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。从A 到压缩弹簧至最短的过程中,由动能定理得 : - mgl+W 弹 0-mv0 2由功能关系: W 弹 =-Ep =-Ep解得 Ep=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得-2 mgl Ek-mv02解得 Ek=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得-2 mgR mv22- Ek小物块能够经过最高点的条件mmg,解得 R

3、0.12m小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即mv12mgR,解得 R 0.3m;设第一次自A 点经过圆形轨道最高点时,速度为v1,由动能定理得:2-2-2 mgR mv1mv0且需要满足mmg,解得 R0.72m,综合以上考虑,R 需要满足的条件为:0.3mR0.42m或 0R0.12m。【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。2 某小型设备工厂采用如图所示的传送带传送工件。传送带由电动机带动,以v 2m/s 的速度顺时针匀速转动,倾角37 。工人将工件轻放至传送带最低

4、点A,由传送带传送至7,所运送的每个工最高点 B 后再由另一工人运走,工件与传送带间的动摩擦因数为8件完全相同且质量m2kg 。传送带长度为L6m ,不计空气阻力。(工件可视为质点,sin37 0.6 , cos370.8, g10m / s2 )求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至 B 点电动机需额外多输出多少电能?(2)若工人每隔 1 秒将一个工件轻放至 A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】 (1)104J; (2)104W【解析】【详解】(1)对工件mg cosmgsinmav22axvat1t12s得x2

5、mx带vt12xx相x带x2m由能量守恒定律E电QEpEk即E电mg cos x相 mgL sin1 mv22代入数据得E电104J(2)由题意判断,每 1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。匀速运动的相邻的两个工件间距为xv t2mLxn x得n2所以,传送带上总有两个工件匀加速,两个工件匀速则传送带所受摩擦力为f2mg cos2mg sin电动机因传送工件额外做功功率为Pfv104W3 如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与 B 点的高度差为 h10.3 m ,倾斜传送带与水平方向的夹角为 37

6、,传送带的上端C 点到 B 点的高度差为h2 0.1125m( 传送带传动轮的大小可忽略不计) 一质量为 m1 kg 的滑块 (可看作质点 )从轨道的 A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v 0.5 m/s ,滑块与传送带间的动摩擦因数为 0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g10 m/s 2,试求:(1).滑块运动至 C 点时的速度 vC 大小;(2).滑块由 A 到 B 运动过程中克服摩擦力做的功Wf;(3).滑块在传送带上运动时与传送带摩擦产生的热量Q.【答案】 (1) 2.5 m/s ( 2)

7、 1 J ( 3) 32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。(1) 在 C 点,竖直分速度: vy2gh2 1.5m / svy vcsin370 ,解得: vc2.5m / s(2)C 点的水平分速度与B 点的速度相等,则 vB vx vC cos37 2m / s从 A 到 B 点的过程中,据动能定理得:mgh1W f1mvB2 ,解得: Wf 1J2(3) 滑块在传送带上运动时,根据牛顿第二定律得:mgcos37 mgsin37 ma解得: a0.4m / s2达到共同速度所需时间vvc5sta二者间的相对位移xv vct vt5m2由于 mgs

8、in37mgcos37,此后滑块将做匀速运动。滑块在传送带上运动时与传送带摩擦产生的热量Q mgcos370x32J4 儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。某弹珠游戏可简化成如图所示的竖直平面内OABCD透明玻璃管道,管道的半径较小。为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y5 x2 的光滑抛物线形状管道 OA;9AB、BC是半径相同的光滑圆弧管道, CD 是动摩擦因数 0.8 的粗糙直管道;各部分管道在连接处均相切。 A、B、C、D 的横坐标分别为 xA1.20m 、 xB 2.00m 、xC 2.65m 、 xD3.40m。已知,弹珠质量

9、m 100g,直径略小于管道内径。 E 为 BC管道的最高点,在 D 处有一反弹膜能无能量损失的反弹弹珠,sin37 0.6, sin53 0.8, g10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在 O 点抛射速度 0应该多大;(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3 倍,在 O 点抛射速度 v0应该多大;(3)游戏设置 3 次通过 E 点获得最高分,若要获得最高分在O 点抛射速度 0的范围。【答案】( 1) 3m/s (2) 206m/s2 m/s( 3) 2 3 m/s 2【解析】【详解】5(1)由 y9x2 得: A 点坐标( 1.20m ,0.80m )

10、由平抛运动规律得:xAv0t,yA1 gt 22代入数据,求得t 0.4s, v03m/s ;( 2)由速度关系,可得 53求得 AB、BC 圆弧的半径 R 0.5m OE 过程由动能定理得:mgyAmgR(1cos53 )1 mvE2 1 mv0222解得 v0 2 2 m/s ;(3) sin 2.65 2.000.400.5, 300.5CD 与水平面的夹角也为30设 3 次通过 E 点的速度最小值为v1 由动能定理得mgymgR(1cos53 )2 mgx cos30 01mv1ACD22解得 v1 2 3 m/s设 3 次通过 E 点的速度最大值为v2 由动能定理得mgyAmgR(1

11、cos53 )4 mgxCDcos30 01 mv222解得 v2 6m/s考虑 2 次经过 E 点后不从O 点离开,有2mgxCDcos30 01mv322解得 v326 m/s故 2 3 m/s 0 2 6 m/s5 如图所示,在倾角为=30m的的固定斜面上固定一块与斜面垂直的光滑挡板,质量为半圆柱体 A 紧靠挡板放在斜面上,质量为2m 的圆柱体 B 放在 A 上并靠在挡板上静止。A与 B 半径均为 R,曲面均光滑,半圆柱体A 底面与斜面间的动摩擦因数为现用平行斜面向上的力拉 A,使 A 沿斜面向上缓慢移动,直至B 恰好要降到斜面设最大静摩擦力等于滑动摩擦力,重力加速度为g。求:(1)未拉

12、 A 时, B 受到 A 的作用力 F 大小;(2)在 A 移动的整个过程中,拉力做的功W;(3)要保持 A 缓慢移动中拉力方向不变,动摩擦因数的最小值min【答案】( 1) F =13) mgR (3)533 mg ( 2) W(9min92【解析】【详解】(1)研究 B,据平衡条件,有F =2mg cos解得F =3 mg(2)研究整体,据平衡条件,斜面对A 的支持力为N =3mgcos= 33 mg2f = N= 33 mg2由几何关系得A 的位移为x =2Rcos30 = 3 R克服摩擦力做功Wf =fx =4.5 mgR由几何关系得A 上升高度与B 下降高度恰均为h =3 R2据功能

13、关系W + 2mgh - mgh - Wf = 0解得W1 (93)mgR2(3) B 刚好接触斜面时,挡板对B 弹力最大研究 B 得Nm2mg4mgsin 30研究整体得fmin + 3mgsin30 =Nm解得f min = 2.5mg可得最小的动摩擦因数:f min5 3minN96 如图所示,倾角为306m/s的速度运的光滑斜面的下端有一水平传送带,传送带正以动,运动方向如图所示一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失物体与传送带间的动摩擦因数为0.5,重力加速度g=1

14、0m/s 2,求:( 1)物体第一次到达 A 点时速度为多大?( 2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大?( 3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少?【答案】( 1) 8m/s ( 2)6.4m ( 3) 1.8m【解析】【分析】( 1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;( 2)当物体滑到传送带最左端速度为零时, AB 间的距离 L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可【详解】(1)物体由光

15、滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:mgh1 mv22解得: v2gh2103.2 8m/s(2)当物体滑动到传送带最左端速度为零时,AB 间的距离 L 最小,由动能能力得:mgL 01 mv22解得: Lv282m 6.4m2 g2 0.5 10(3)因为滑上传送带的速度是8m/s 大于传送带的速度 6m/s,物体在到达A 点前速度与传送带相等,最后以v带6m/s 的速度冲上斜面,根据动能定理得:mgh01 mv带22v带2621.8m得: h2m2g10【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题7 如图所示,AB是倾角为BC

16、D是光滑的圆弧轨道,AB恰好在B点与圆的粗糙直轨道,弧相切,圆弧的半径为R一个质量为 m 的物体(可以看作质点)从直轨道上与圆弧的圆心 O 等高的 P 点由静止释放,结果它能在两轨道间做往返运动已知物体与轨道AB 间的动摩擦因数为g试求:,重力加速度为(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s;(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D(E、 O、D 为同一条竖直直径上的点),释放点距B 点的距离 L 应满足什么条件3 个【答案】( 1) vB2gR(sincos )

17、 ; LRmg(3 2cos ) ;( 2) FNtan( 3) L (3 2cos )R2(sincos )【解析】【分析】【详解】(1)设物体释放后,第一次到达B 处的速度为v1 ,根据动能定理可知:mgRcosmg cosR cos1 mv12sin2解得:2gR(sincos)vBtan物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到 B 全过程用动能定理,有mgRcosmgL cos0得物体在 AB 轨道上通过的总路程为RL(2)最终物体以 B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到 E 时速度为v2 v,由动

18、能定理知:mgR(1cos )1mv222在 E 点,由牛顿第二定律有mv22FNmgR解得物体受到的支持力FNmg(32cos)根据牛顿第三定律,物体对轨道的压力大小为FN FNmg(3 2cos ) ,方向竖直向下(3)设物体刚好到达D 点时的速度为vD 此时有mgmvD2R解得:vDgR设物体恰好通过D 点时释放点距B 点的距离为L0 ,有动能定理可知:mg L0 sinR(1cos)mgcosL01 mvD22联立解得:L0(32cos) R2(sincos)则: (32cos)RLcos)2(sin答案:( 1)vB2gR(sincos) ; LR(2)Fmg(3 2cos ) ;

19、( 3)tanN (3 2cos) RLcos )2(sin8 如图所示,半径 R = 0.1m的竖直半圆形光滑轨道BC 与水平面 AB 相切,AB 距离 x =1m质量 m = 0.1kg 的小滑块1 放在半圆形轨道末端的B 点,另一质量也为m = 0.1kg 的小滑块 2,从 A 点以 v0 2 10m/s 的初速度在水平面上滑行,两滑块相碰,碰撞时间极短,碰后两滑块粘在一起滑上半圆形轨道已知滑块2 与水平面之间的动摩擦因数= 0.2取重力加速度 g 10m/s2 两滑块均可视为质点求(1)碰后瞬间两滑块共同的速度大小v;(2)两滑块在碰撞过程中损失的机械能E ;(3)在C 点轨道对两滑块

20、的作用力F【答案】 (1)v=3m/s(2) E= 0.9J(3)F=8N,方向竖直向下【解析】【详解】(1)物块 2 由 A 到 B 应用动能定理:mgx1 mv121 mv0222解得 v1=6m/s两滑块碰撞前后动量守恒,根据动量守恒有: mv12mv解得: v 3m / s 方向:水平向右(2)两滑块在碰撞过程中损失的机械能E1 mv1212mv222解得:E0.9J(3)两滑块从 B 到 C 机械能守恒,根据机械能守恒定律有:1 2mv21 2mvc22mgR22两滑块在 C 点时: 2mgFN2m vC2R解得: FN8N据牛顿第三定律可得:在C 点轨道对两滑块的作用力F=8N,方

21、向竖直向下9 如图所示,在方向竖直向上、大小为6A、 BE=110V/m 的匀强电场中,固定一个穿有两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m A、 B 用一根绝缘轻杆相连,A 带的电荷量为7q=+7 10C,B 不带电,质量分别为mA=0.01kg、mB=0.08kg将两小球从圆环上的图示位置(A 与圆心 O 等高, B 在圆心 O 的正下方)由静止释放,两小球开始沿逆时针方向转动重力加速度大小为g=10m/s 2 (1)通过计算判断,小球A 能否到达圆环的最高点C?( 2)求小球 A 的最大速度值( 3)求小球 A 从图示位置逆时针转动的过程中,其

22、电势能变化的最大值【答案】 (1) A 不能到达圆环最高点( 2) 2 2 m/s ( 3) 0.1344J3【解析】【分析】【详解】试题分析: A、B 在转动过程中,分别对A、 B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点;A、B 做圆周运动的半径和角速度均相同,对A、 B 分别由动能定理列方程联立求解最大速度;A、 B 从图示位置逆时针转动过程中,当两球速度为0 时,根据电势能的减少与电场力做功关系求解(1)设 A、 B 在转动过程中,轻杆对A、 B 做的功分别为 WT 和 WT ,根据题意有 : WT WT0设 A、 B 到达圆环最高点的动能分别为EKA、 EKB对

23、 A 根据动能定理: qER mAgR+WT1=EKA对 B 根据动能定理: WT1mB gRE联立解得: EKA+EKB= 0.04J由此可知 :A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点(2)设 B 转过 角时, A、 B 的速度大小分别为vA、 vB,因 A、 B 做圆周运动的半径和角速度均相同,故:vAB=v对 A 根据动能定理: qER sinmA gRsinWT 21 mAvA22对 B 根据动能定理: WT 2mB gR 1cos1 mB vB22联立解得: vA2 83sin4cos49由此可得 :当 tan32 2 m / s时, A、 B 的最大速度均为

24、vmax43( 3) A、 B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得 : 3sin +4cos 4=0解得: sin2425或 sin =0(舍去)所以 A 的电势能减少: EP qER sin84 J 0.1344 J625点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题10 图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC分别是圆形轨道的最低点和最高点,其半

25、径R=1m,一质量 m1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小 v0 12m s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点已知 A、B 两点间的距离 L1 5 75m,物块与水平轨道写的动摩擦因数0 2,取 g 10m s2,圆形轨道间不相互重叠,求:( 1)物块经过 B 点时的速度大小 vB;( 2)物块到达 C 点时的速度大小 vC;( 3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2) 9m / s (3)72J【解析】【分析】【详解】(1)物块从 A 到 B 运动过程中,根据动能定理得:

26、mgL11 mvB21 mv0222解得: vB11m / s(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1 mvB21 mvC2mg2R22解得: vC9m / s(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201 mvB22解得: L230.25m对整个过程,由能量守恒定律有:Q1 mv0202解得: Q=72J【点睛】选取研究过程,运用动能定理解题动能定理的优点在于适用任何运动包括曲线运动知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义11 将一根长为L 的光滑细钢丝ABCDE制成如图所示的形状,并固定在竖直平面内其中AD段竖直, DE段为 3

27、圆弧,圆心为O,E 为圆弧最高点,C与 E、 D与 O分别等高, BC41 AC将质量为m的小珠套在钢丝上由静止释放,不计空气阻力,重力加速度为g4(1)小珠由C点释放,求到达E 点的速度大小v1;(2)小珠由B 点释放,从E 点滑出后恰好撞到D点,求圆弧的半径R;(3)欲使小珠到达E 点与钢丝间的弹力超过mg ,求释放小珠的位置范围4【答案】 v1=0; R2L; C 点上方低于3L5L34(4 3 )处滑下或高于44(4 3 )处【解析】【详解】( 1)由机械能守恒可知,小珠由 C点释放,到达 E 点时,因 CE等高,故到达 E 点的速度为零;(2)由题意: BC1L ( 3 2R R);

28、小珠由 B 点释放,到达E 点满足:44mgBC1 mvE22从 E 点滑出后恰好撞到D点,则 RvEt2R联立解得: R2L; tg4 312(3) a. 若小珠到达 E 点与小珠上壁对钢丝的弹力等于1 mgm vE 1 ;从mg ,则 mg44R释放点到 E 点,由机械能守恒定律:mgh11 mvE21;2联立解得: h3 R3L)84(4 3b. 若小珠到达 E 点与小珠下壁对钢丝的弹力等于1 mg ,则 mg1 mgm vE22;从释放44R点到 E 点,由机械能守恒定律:mgh21 mvE22;2联立解得: h55L; 故当小珠子从C 点上方低于3L处滑下或高R4(4 34(4 38

29、)5L处滑下时,小珠到达E 点与钢丝间的弹力超过1于mg .4(4 3 )412 如图所示, A、 B 两球质量均为m,用一长为l 的轻绳相连, A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态现给B 球水平向右的初速度v0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l/2 处(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小 T;(2)B 球第一次到达最高点时, A 球的速度大小v ;1(3)从开始到 B 球第一次到达最高点的过程中,轻绳对B 球做的功 W【答案】( 1) mg+mv02v02gl( 3)mgl mv02( 2) v124l【解析】【详解】(1) B 球刚开始运动时,A 球静止,所以B 球做圆周运动对 B 球: T-mg=m v02l得: T=mg+m v02l(2) B 球第一次到达最高点时,A、 B 速度大小、方向均相同,均为v1以 A、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,1 mv02mgl1 mv121 mv12mg l2222得: v1v02gl2(3)从开始到 B 球第一次到达最高点的过程,对B 球应用动能定理W-mg l1 mv12 1 mv02222得: W= mglmv024

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1