高考物理试卷分类汇编物理动能与动能定理(及答案).docx

上传人:李医生 文档编号:8699651 上传时间:2020-12-23 格式:DOCX 页数:14 大小:236.53KB
返回 下载 相关 举报
高考物理试卷分类汇编物理动能与动能定理(及答案).docx_第1页
第1页 / 共14页
高考物理试卷分类汇编物理动能与动能定理(及答案).docx_第2页
第2页 / 共14页
高考物理试卷分类汇编物理动能与动能定理(及答案).docx_第3页
第3页 / 共14页
高考物理试卷分类汇编物理动能与动能定理(及答案).docx_第4页
第4页 / 共14页
高考物理试卷分类汇编物理动能与动能定理(及答案).docx_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《高考物理试卷分类汇编物理动能与动能定理(及答案).docx》由会员分享,可在线阅读,更多相关《高考物理试卷分类汇编物理动能与动能定理(及答案).docx(14页珍藏版)》请在三一文库上搜索。

1、高考物理试卷分类汇编物理动能与动能定理( 及答案 )一、高中物理精讲专题测试动能与动能定理1 如图所示,半径R=0.5 m的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角=37的粗糙斜面相切。一质量m=1kg 的小滑块从A 点正上方h=1 m处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数=0.5,sin37 =0.6, cos37 =0.8,重力加速度g=10 m/s 2。(1)求滑块第一次运动到B 点时对轨道的压力。(2)求滑块在粗糙斜面上向上滑行的最大距离。(3)通过计算判断滑块从斜面上返回后能否滑出【答案】 (1)70N; (2)1.

2、2m; (3)能滑出 AA 点。【解析】【分析】【详解】(1)滑块从 P 到 B 的运动过程只有重力做功,故机械能守恒,则有mg hR1 mvB22那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且FNmvB2mg2mg h Rmg70NRR故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为 70N ,方向竖直向下。(2)设滑块在粗糙斜面上向上滑行的最大距离为L,滑块运动过程只有重力、摩擦力做功,故由动能定理可得mg( hRR cos37L sin37 )mgL cos370所以L1.2m(3)对滑块从 P 到第二次经过B 点的运动过程应用动能定理可得1 mvB

3、22mg hR2 mgL cos370.54mgmgR所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。2 如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量m 0.04kg ,电量 q 3 10 4 C 的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为 0.32J。某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道 BC 滑下,运动到光滑水平轨道CD ,从 D点进入

4、到光滑竖直圆内侧轨道。已知倾斜轨道与水平方向夹角为37 ,倾斜轨道长为L 2.0m,带电小物块与倾斜轨道间的动摩擦因数0.5 。小物块在 C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强E 2 105 V/m 。已知cos370.8 , sin370.6 ,取 g 10m/s2 ,求:( 1)小物块运动到 A 点时的速度大小 vA ;( 2)小物块运动到 C 点时的速度大小 vC ;( 3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】( 1) 4m/s ;( 2)33m/s;( )

5、?3 R 0.022m【解析】【分析】【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能EP1 mvA22解得vA2EP 2 0.324m/sm0.04(2) A 到 B 物体做平抛运动,到B 点有vA cos37所以4vB5m/sB 到 C 根据动能定理有mgL sin37mgcos37 L1 mvC21 mvB222解得vC 33m/s(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg=59.6N所以 D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即F m vD2R解得FRvD所以要小物块不离开圆轨道则应满足v

6、CvD 得:R 0.022m3 如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B点 D点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R0.45m的圆环剪去左上角127 MN为其竖直直径,P点到桌面的竖直距离为R P的圆弧,点到桌面右侧边缘的水平距离为1.5R若用质量 m1 0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m2 0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x 4t 2t 2,物块从 D 点飞离桌面后恰好由P 点沿切线落入圆轨道g 10m/s

7、2,求:(1)质量为 m2 的物块在 D 点的速度;(2)判断质量为 m2 0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为 m2 0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】( 1) 2.25m/s (2)不能沿圆轨道到达M 点 ( 3) 2.7J【解析】【详解】(1)设物块由 D 点以初速度 vD 做平抛运动,落到P 点时其竖直方向分速度为:vy2gR2 100.45 m/s 3m/svy4tan53 vD3所以: vD 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mgm v2 ,R解得: vgR32 m/s2物块到达P 的速度:vPv

8、D2vy2322.252m/s 3.75m/s若物块能沿圆弧轨道到达M 点,其速度为vM ,由 D 到 M 的机械能守恒定律得:1 m2vM21 m2vP2m2g 1cos53R22可得: vM20.3375,这显然是不可能的,所以物块不能到达M 点3)由题意知x4t-2t2,物块在桌面上过B点后初速度vB( 4m/s ,加速度为:a4m/s2则物块和桌面的摩擦力:m2 gm2 a可得物块和桌面的摩擦系数:0.4质量 m1 0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:Epm1gxBC0质量为 m20.2kg 的物

9、块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:Epm2 gxBC1 m2vB 22可得, xBC2m在这过程中摩擦力做功:W1m2gx BC1.6J由动能定理, B 到 D 的过程中摩擦力做的功:W 21 m2vD21 m2v0222代入数据可得:W2 - 1.1J质量为 m20.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功WW1W22.7J即克服摩擦力做功为2.7 J.4 如图所示 ,水平轨道的左端与固定的光滑竖直圆轨道相切于点 ,右端与一倾角为的光滑斜面轨道在点平滑连接 (即物体经过点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为的滑块从圆弧轨道的顶端点由静止

10、释放 ,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至点 ,已知光滑圆轨道的半径,水平轨道长为,其动摩擦因数,光滑斜面轨道上长为, 取,求(1)滑块第一次经过圆轨道上点时对轨道的压力大小;(2)整个过程中弹簧具有最大的弹性势能;(3)滑块在水平轨道上运动的总时间及滑块几次经过点 .【答案】 (1)(2)(3) 3 次【解析】本题考查机械能与曲线运动相结合的问题,需运用动能定理、牛顿运动定律、运动学公式、功能关系等知识。(1)滑块从点到点 ,由动能定理可得:解得 :滑块在点 :解得 :由牛顿第三定律可得:物块经点时对轨道的压力(2)滑块第一次到达点时 ,弹簧具有最大的弹性势能.滑块从点到点

11、 ,由动能定理可得:解得 :(3)将滑块在段的运动全程看作匀减速直线运动加速度则滑块在水平轨道上运动的总时间滑块最终停止上在水平轨道间,设滑块在最终停下来的全过程,段运动的总路程为,从滑块第一次经过点到由动能定理可得:解得 :结合段的长度可知,滑块经过点 3 次。5如图所示,一长度 LAB=4 98m,倾角 =30的光滑斜面 AB 和一固定粗糙水平台 BC 平滑连接,水平台长度 LBC=04m,离地面高度 H=1 4m,在 C 处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶端 A 处静止释放质量为m=2kg 的小物块(可视为质点),忽略空

12、气阻力,小物块与间的动摩擦因素=0 1, g 取 10m/s2。问:BC( 1)小物块第一次与挡板碰撞前的速度大小;( 2)小物块经过 B 点多少次停下来,在 BC 上运动的总路程为多少;( 3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D 点,已知半球体半径r=0 75m, OD 与水平面夹角为 =53,求小物块与挡板第几次碰撞后拿走挡板?(取)【答案】( 1) 7 m/s;( 2)63 次24 9m( 3) 25 次【解析】试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过 B 点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算

13、出经过 B 点多少次。小物块经过平抛运动到达D 点,可以求出平抛时的初速度,进而求出在BC 段上运动的距离以及和当班碰撞的次数。(1)从 A 到 C 段运用动能定理mgsin-LAB=mv2v=7m/s(2)从开始到最后停下在BC段所经过的路程为xmgsinLAB-mgx=0x=24 9m=31 1经过 AB 的次数为312+1=63 次(3)设小物块平抛时的初速度为V0H -r=gt2r+=v0tv0=3 m/s设第 n 次后取走挡板2mv02bcmv -=2L nn=25 次考点:动能定理、平抛运动【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到D 时平抛运动的初速度;再一个容

14、易出现错误的是在BC段运动的路程与经过B 点次数的关系,需要认真确定。根据功能关系求出在BC 段运动的路程。6 如图所示, AB 是倾角为的粗糙直轨道,BCD是光滑的圆弧轨道,AB 恰好在 B 点与圆弧相切,圆弧的半径为R一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心 O 等高的P 点由静止释放,结果它能在两轨道间做往返运动已知物体与轨道AB 间的动摩擦因数为,重力加速度为g试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s;(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道

15、的最高点D(E、 O、D 为同一条竖直直径上的3 个点),释放点距B 点的距离 L 应满足什么条件2gR(sincos ); LR) ;【答案】( 1) vB( 2) FN mg(3 2costan(3) L (32cos )R2(sincos )【解析】【分析】【详解】(1)设物体释放后,第一次到达B 处的速度为v1 ,根据动能定理可知:mgRcosmg cos R cos1 mv2sin21解得:2gR(sincos)vBtan物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到 B 全过程用动能定理,有mgRcosmgL cos0得

16、物体在 AB 轨道上通过的总路程为RL(2)最终物体以 B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到 E 时速度为v2 v,由动能定理知:mgR(1cos )1 mv222在 E 点,由牛顿第二定律有FN mgmv22R解得物体受到的支持力FNmg(32cos)根据牛顿第三定律,物体对轨道的压力大小为FN FNmg(3 2cos ) ,方向竖直向下(3)设物体刚好到达D 点时的速度为vD 此时有mgmvD2R解得:vDgR设物体恰好通过D 点时释放点距B 点的距离为L0 ,有动能定理可知:mg L0 sinR(1cos)mgcos L01mvD22联立解得:L0(32cos) R2

17、(sincos)则: (32cos)RLcos)2(sin2gR(sincos)Rmg(3 2cos ) ; ( 3)答案:( 1) vB; L(2) FNtanL(32cos) R2(sincos )7 如图为一水平传送带装置的示意图紧绷的传送带AB 始终保持 v0=5m/s的恒定速率运行, AB 间的距离 L 为 8m 将一质量 m 1kg 的小物块轻轻放在传送带上距A 点 2m 处的 P点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N小物块与传送带间的动摩擦因数 0.5,重力加速度 g 10 m/s 2求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到

18、M 点, M 点为圆轨道右半侧上的点,该点高出 B 点 0.25 m,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围【答案】( 1) r 0.5m ( 2) 7mx7?.5m,0 x5?.5m【解析】【分析】【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度ag5m / s2小物块与传送带共速时,所用的时间tv01sa运动的位移v02.5m L 2=6mx2a故小物块与传送带达到相同速度后以v05m / s的速度匀速运动到B,然后冲上光滑圆弧轨道恰好到达N 点,故有: mgm vN2r由机械能守恒定律得1 mv02mg (2r )1 mvN2 ,解得 r0.5

19、m22(2)设在距 A 点 x1 处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:mg( L x1 ) mgh 代入数据解得x17.5?m设在距A 点 x2 处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:mg( L x2 ) mgR 代入数据解得x27?m则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由( 1)可知 x38m2.5m5.5?m则: 0x5.5m 故小物块放在传送带上放在传送带上距A 点的距离范围:7mx7?.5m和0x5?.5m考点:考查了相对运动,能量守恒定律的综合应用8 如

20、图所示, AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径 BD 竖直,将弹簧水平放置,一端固定在A 点现使质量为m 的小滑块从D 点以速度v0进入轨道DCB,然后沿着BA 运动压缩弹簧,弹簧压缩最短时小滑块处于P 点,重力加速度大小为g,求:(1)在 D 点时轨道对小滑块的作用力大小FN;( 2)弹簧压缩到最短时的弹性势能Ep;( 3)若水平轨道 AB 粗糙,小滑块从 P 点静止释放,且 PB 5l,要使得小滑块能沿着轨道BCD运动,且运动过程中不脱离轨道,求小滑块与AB 间的动摩擦因数的范围【答案】 (1)( 2)(3) 0.2或 0.5 0.7【解析】 (

21、1)解得(2)根据机械能守恒解得(3)小滑块恰能能运动到B 点解得 0.7小滑块恰能沿着轨道运动到C 点解得 0.5所以 0.5 0.7小滑块恰能沿着轨道运动D 点解得 0.2所以 0.2综上 0.2或 0.5 0.79 一质量为m =0.5kg 的电动玩具车,从倾角为=30的长直轨道底端,由静止开始沿轨道向上运动,4s 末功率达到最大值,之后保持该功率不变继续运动,运动的v- t图象如图所示,其中AB 段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3 倍,空气阻力不计.取重力加速度g=10m/s2.( 1)求玩具车运动过程中的最大功率P;( 2)求玩具车在 4s

22、 末时(图中 A 点)的速度大小 v1;(3)若玩具车在12s 末刚好到达轨道的顶端,求轨道长度L.【答案】( 1) P=40W(2) v1=8m/s( 3) L=93.75m【解析】【详解】(1)由题意得,当玩具车达到最大速度v=10m/s 匀速运动时,牵引力: F=mgsin30 +0.3mg由 P=Fv代入数据解得:P=40W(2)玩具车在 0-4s内做匀加速直线运动,设加速度为a,牵引力为 F1,由牛顿第二定律得:F1-( mgsin30 +0.3mg )=ma4s 末时玩具车功率达到最大,则P=F1v1由运动学公式 v1=at 1 (其中 t 1=4s)代入数据解得 :v1=8m/s

23、(3)玩具车在 04s 内运动位移 x1=1 at122得: x1=16m玩具车在 412s 功率恒定,设运动位移为x2,设 t2=12s 木时玩具车速度为v,由动能定理得2121mv212P(t - t )-( mg sin30 +0.3mg ) x =2mv12代入数据解得: x2=77.75m所以轨道长度 L=x12+x =93.75m10 如图甲所示,一质量为 ma 的滑块 (可看成质点 )固定在半径为 R 的光滑四分之一圆弧轨道的顶端 A 点,另一质量为 mb 的滑块 (可看成质点 )静止在轨道的底端 B 处, A 点和圆弧对应的圆心 O 点等高。(1)若圆弧的底端 B 与水平光滑平

24、面连接(足够长 ), mb 静止于 B 点, ma从静止开始释放,假设两滑块碰撞时无机械能损失,且两滑块能发生两次碰撞,试证明:3mavb代入可得: 3ma mb12(2)机械能守恒ma gR=mav1滑块 ma 与 mb 相碰后结合在一起,动量守恒ma v1=mcv2从 B 运动到 C 点时速度恰好为零,由动能定理可得: fL=0 1 mc v222f=mca, v0=v2 atmc 向右运动: s1=v2t 1 at22传送带向左运动:s2=v0tQ=fs 相对 =f(s1 s2)=9J11 如图所示,水平轨道BC 的左端与固定的光滑竖直1/4 圆轨道相切与B 点,右端与一倾角为 30的光

25、滑斜面轨道在 C 点平滑连接(即物体经过 C 点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为 2Kg 的滑块从圆弧轨道的顶端 A 点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D 点,已知光滑圆轨道的半径R 0.45m,水平轨道BC 长为 0.4m ,其动摩擦因数0.2,光滑斜面轨道上CD长为 0.6m, g 取10m/s 2,求( 1)滑块第一次经过 B 点时对轨道的压力( 2)整个过程中弹簧具有最大的弹性势能;( 3)滑块最终停在何处?【答案】 (1) 60N,竖直向下;(2)1.4J;( 3)在 BC间距 B 点 0.15m 处 【解析】【详解】(1)滑块从

26、A 点到 B 点,由动能定理可得: mgR= 1mvB22解得: vB3m/s ,滑块在 B 点,由牛顿第二定律:F-mg=m vB2R解得: F 60N,由牛顿第三定律可得:物块对B 点的压力: F F 60N;(2)滑块从 A 点到 D 点,该过程弹簧弹力对滑块做的功为W,由动能定理可得:mgR mgLBC mgLCDsin30 +W0,其中: EPP W,解得: E 1.4J;(3)滑块最终停止在水平轨道BC 间,从滑块第一次经过B 点到最终停下来的全过程,由动能定理可得:解得: s 2.25mmg s 01 mvB22则物体在 BC 段上运动的次数为:n 2.25 5.625,0.45

27、说明物体在 BC 上滑动了 5 次,又向左运动0.625 0.4 0.25m,故滑块最终停止在 BC间距 B 点0.15m 处(或距 C 点 0.25m 处);【点睛】本题考查动能定理及牛顿第二定律等内容,要注意正确受力分析;对于不涉及时间的问题,优先选用动能定理A、B两球质量均为m,用一长为l的轻绳相连,A球中间有孔套在光滑的12 如图所示,足够长的水平横杆上,两球处于静止状态现给B 球水平向右的初速度 v0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l/2 处(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T;(2)B 球第一次到达最高点时,A 球的

28、速度大小v1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W【答案】( 1) mg+mv02v02gl( 3)mgl mv02l( 2) v142【解析】【详解】(1) B 球刚开始运动时,A 球静止,所以B 球做圆周运动对 B 球: T-mg=m v02l2 v(2) B 球第一次到达最高点时,A、 B 速度大小、方向均相同,均为v1以 A、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到点,根据机械能守恒定律,B 球第一次到达最高1 mv02mgl1 mv121 mv12mg l2222得: v1v02gl2(3)从开始到 B 球第一次到达最高点的过程,对B 球应用动能定理W-mg l1 mv12 1 mv02222得: W= mglmv024

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1