高考物理动量定理提高训练.docx

上传人:大张伟 文档编号:8700253 上传时间:2020-12-23 格式:DOCX 页数:9 大小:169.36KB
返回 下载 相关 举报
高考物理动量定理提高训练.docx_第1页
第1页 / 共9页
高考物理动量定理提高训练.docx_第2页
第2页 / 共9页
高考物理动量定理提高训练.docx_第3页
第3页 / 共9页
高考物理动量定理提高训练.docx_第4页
第4页 / 共9页
高考物理动量定理提高训练.docx_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《高考物理动量定理提高训练.docx》由会员分享,可在线阅读,更多相关《高考物理动量定理提高训练.docx(9页珍藏版)》请在三一文库上搜索。

1、高考物理动量定理提高训练一、高考物理精讲专题动量定理1 质量为 m 的小球,从沙坑上方自由下落,经过时间t1 到达沙坑表面,又经过时间t2 停在沙坑里求:沙对小球的平均阻力F;小球在沙坑里下落过程所受的总冲量I【答案】(1)mg(t1 t2t 2 )(2) mgt1【解析】试题分析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C. 在下落的全过程对小球用动量定理:重力作用时间为t1 +t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t +t )-Ft=0,解得:方向竖直向上122仍然在下落的全过程对小球用动量定理:在t1 时间内只有重力的冲量,在t2 时间内只

2、有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,I=mgt1 方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法2 如图所示,长为L 的轻质细绳一端固定在地高度为 H。现将细绳拉至与水平方向成30O 点,另一端系一质量为 m ,由静止释放小球,经过时间的小球, O 点离t 小球到达最低点,细绳刚好被拉断,小球水平抛出。若忽略空气阻力,重力加速度为g。(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。请通过计算,说明你的

3、观点。2m2 gL ;( 3)当 LH【答案】( 1) F=2mg ;( 2) I Fmgt时小球抛的最远2【解析】【分析】【详解】(1)小球从释放到最低点的过程中,由动能定理得mgLsin 301mv022小球在最低点时,由牛顿第二定律和向心力公式得2mv0FmgL解得:F=2mg(2)小球从释放到最低点的过程中,重力的冲量IG=mgt动量变化量pmv0由三角形定则得,绳对小球的冲量I Fmgt2m2gL(3)平抛的水平位移 xv0t ,竖直位移HL1 gt 22解得x2L( H L)当 LH时小球抛的最远23 如图所示,一光滑水平轨道上静止一质量为M 3kg 的小球 B 一质量为 m 1k

4、g 的小球 A 以速度 v0 2m/s 向右运动与 B 球发生弹性正碰,取重力加速度g10m/s 2 求:( 1)碰撞结束时 A 球的速度大小及方向;( 2)碰撞过程 A 对 B 的冲量大小及方向 【答案】 (1) 1m/s ,方向水平向左 ( 2) 3Ns,方向水平向右【解析】【分析】 A 与 B 球发生弹性正碰 ,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向 ;碰撞过程对 B 应用动量定理求出碰撞过程A 对 B 的冲量 ;解:( 1)碰撞过程根据动量守恒及能量守恒得:mv0 mvA Mv B1 mv021 mvA21 Mv B2222联立可解得: vB1m/s , vA1m/

5、s负号表示方向水平向左(2)碰撞过程对B 应用动量定理可得:IMv B0可解得: I 3Ns 方向水平向右4 如图所示,一质量m1=0.45kg 的平顶小车静止在光滑的水平轨道上车顶右端放一质量m2=0.4 kg 的小物体,小物体可视为质点现有一质量m0 =0.05 kg 的子弹以水平速度 v0=100m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为 =0.5,最终小物体以 5 m/s 的速度离开小车g 取 10 m/s 2求:( 1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小( 2)小车的长度【答案】( 1) 4.5N s ( 2) 5.5

6、m【解析】 子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:m0 vo (m0 m1 )v1 ,可解得 v110m / s ;对子弹由动量定理有:Imv1mv0 , I 4.5Ns ( 或 kgm/s) ; 三物体组成的系统动量守恒,由动量守恒定律有:(m0 m1 )v1 (m0m1 )v2m2 v ;设小车长为 L,由能量守恒有:m2 gL1 ( m0 m1 )v121 (m0 m1 )v221 m2v2222联立并代入数值得 L 5.5m;点睛 :子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度 ,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组

7、成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度5 如图所示,质量M=1.0kg 的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数=0.4。质量m0=0.005kg 的子弹以速度 v0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长, g 取 10m/s 2。求:( 1)物块的最大速度 v1;( 2)木板的最大速度 v2;( 3)物块在木板上滑动的时间t .【答案】( 1) 3m/s ;( 2)1m/s ;( 3) 0.5s。【解析】【详解】( 1)子弹射入物块后一起向右滑行的

8、初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=( m+m0) v1解得:v1=3m/s( 2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=( M +m+m0) v2。解得:v2=1m/s(3)对木板,根据动量定理得:( m+m0) gt =Mv 2-0解得:t=0.5s6 如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板

9、碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N ? s,已知板与水平面间的动摩擦因数为= 0.5,重力加速度为g=10m/s2 ,不计物块与挡板碰撞的时间,不计物块的大小。求:( 1)物块与挡板碰撞后的一瞬间,长木板的速度大小;( 2)物块在长木板上滑行的时间。【答案】( 1) 2.5m/s (2)56【解析】【详解】(1)设物块与挡板碰撞后的一瞬间速度大小为v1根据动量定理有:Imv0mv1解得: v11m/s设碰撞后板的速度大小为v2 ,碰撞过程动量守恒,则有:mv0Mv 2mv1解得: v22.5m/s(2)碰撞前,物块在平板车上运动的时间:t1L1 sv04碰撞后,长木板

10、以v2 做匀减速运动,加速度大小:a(m M )g7.5m/s 2M设长木板停下时,物块还未滑离木板,木板停下所用时间:t 2v21 sa3在此时间内,物块运动的距离:x1v1t21 m3木板运动的距离:15x22 v2t212m由于 x1x2L ,假设成立,木板停下后,物块在木板上滑行的时间:t3Lx1x21 sv14因此物块在板上滑行的总时间为:tt1t2t35 s67 两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计导轨间的距离l=0.20m,两根质量均m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程

11、中与导轨保持垂直,每根金属杆的电阻为R=0.50在t=0时刻,两杆都处于静止状态现有一与导轨平行,大小0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动经过T=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?【答案】 8.15m/s1.85m/s【解析】设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变由法拉第电磁感应定律,回路中的感应电动势:回路中的电流:杆甲的运动方程:由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为 0)等于外力 F 的冲量:联立以上各式解得代入

12、数据得 8.15m/s 1.85m/s【名师点睛 】两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解8 如图所示,水平地面上静止放置一辆小车A,质量 mA4kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计,可视为质点的物块B 置于 A 的上表面, B 的质量 mB2kg,现对 A 施加一个水平向右的恒力F 10N, A 运动一段时间后,小车左端固定的挡板B发生碰撞,碰撞时间极短,碰后A、B 粘合在一起,共同在 F 的作用下继续运动,碰撞后经时间 t 0.6s,二者的速度达到v 2m/s,求:

13、(1) A、B 碰撞后瞬间的共同速度v 的大小;( 2) A、B 碰撞前瞬间, A 的速度 vA 的大小。【答案】 (1) 1m/s ;( 2) 1.5m/s 。【解析】【详解】( 1) A、B 碰撞后共同运动过程中,选向右的方向为正,由动量定理得: Ft( mA +mB) vt ( mA+mB) v,代入数据解得: v 1m/s;( 2)碰撞过程系统内力远大于外力,系统动量守恒,以向右为正方向,由动量守恒定律得:mAvA( mA+mB) v,代入数据解得:vA 1.5m/s ;92018 年诺贝尔物理学奖授于了阿瑟阿什金( Arthur Ashkin )等三位科学家,以表彰他们在激光领域的杰

14、出成就。阿瑟 阿什金发明了光学镊子(如图),能用激光束 “夹起 ”粒子、原子、分子;还能夹起病毒、细菌及其他活细胞,开启了激光在新领域应用的大门。为了简化问题,将激光束看作是粒子流,其中的粒子以相同的动量沿光传播方向运动。激光照射到物体上,会对物体产生力的作用,光镊效应就是一个实例。现有一透明介质小球,处于非均匀的激光束中(越靠近光束中心光强越强)。小球的折射率大于周围介质的折射率。两束相互平行且强度的激光束,穿过介质小球射出时的光路如图所示。若不考虑光的反射和吸收,请分析说明两光束因折射对小球产生的合力的方向。根据上问光束对小球产生的合力特点,试分析激光束如何“ ”夹起 粒子的?【答案】见解

15、析;【解析】【详解】解:由动量定理可知:v 的方向即为小球对光束作用力的方向当强度强度相同时,作用力F1 2 F ,由平行四边形定则知,和光速受力合力方向向左偏下,则由牛顿第三定律可知,两光束因折射对小球产生的合力的方向向右偏上,如图所示如图所示,小球受到的合力向右偏上,此力的横向的分力Fy,会将小球推向光束中心;一旦小球偏离光速中心,就会受到指向中心的分力,实现光束对小球的约束,如同镊子一样,“夹住”小球其它粒子10 高空作业须系安全带如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为 h(可视为自由落体运动)此后经历时间达到最大伸长,若在此过程中该作用

16、力始终竖直向上,求:t 安全带( 1)整个过程中重力的冲量;( 2)该段时间安全带对人的平均作用力大小【答案】 (1)( 2)【解析】试题分析:对自由落体运动,有:h=解得:,则整个过程中重力的冲量I=mg(t+t 1) =mg( t+)(2)规定向下为正方向,对运动的全程,根据动量定理,有:mg(t 1+t) Ft=0解得:F=11 一质量为 100g 的小球从1.25m 高处自由下落到一厚软垫上若小球从接触软垫到小球陷至最低点经历了0.02s,则这段时间内软垫对小球的平均作用力是多大?(不计空气阻力, g =10m/s2)【答案】 26N【解析】设小球刚落到软垫瞬间的速度为v对小球自由下落

17、的过程,由机械能守恒可得:mgh=1 mv2;2有: v2gh2 10 1.25m / s5m / s选取小球接触软垫的过程为研究过程,取向下为正方向设软垫对小球的平均作用力为F,由动量定理有:( mg-F)t=0-mv得: F mgmv0.1 50.1 1026Nt0.02点睛:本题是缓冲类型,往往根据动量定理求解作用力,要注意研究过程的选取,本题也可以选取小球从开始下落到最低点整个过程研究,比较简单.12 花样滑冰赛场上,男女运动员一起以速度v0=2 m/s 沿直线匀速滑行,不计冰面的摩擦,某时刻男运动员将女运动员以v1=6 m/s 的速度向前推出,已知男运动员的质量为M=60 kg,女运动员的质量为 m=40 kg,求:( 1)将女运动员推出后,男运动员的速度;( 2)在此过程中,男运动员推力的冲量大小;【答案】 (1) v22m / s ; (2) I=160N s3【解析】【分析】【详解】设推出女运动员后,男运动员的速度为v2 ,根据动量守恒定律Mm v0mv1Mv2解得v22 m / s ,“ ”表示男运动员受到方向与其初速度方向相反3在此过程中,对运动员有:Imv1mv0解得 I=160Ns

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1