水轮机安装高程计算的新方法.doc

上传人:啊飒飒 文档编号:9589167 上传时间:2021-03-09 格式:DOC 页数:6 大小:94.50KB
返回 下载 相关 举报
水轮机安装高程计算的新方法.doc_第1页
第1页 / 共6页
水轮机安装高程计算的新方法.doc_第2页
第2页 / 共6页
水轮机安装高程计算的新方法.doc_第3页
第3页 / 共6页
水轮机安装高程计算的新方法.doc_第4页
第4页 / 共6页
水轮机安装高程计算的新方法.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《水轮机安装高程计算的新方法.doc》由会员分享,可在线阅读,更多相关《水轮机安装高程计算的新方法.doc(6页珍藏版)》请在三一文库上搜索。

1、水轮机安装高程计算的新方法杨 军(中南勘测设计研究院工程设计院 湖南长沙 410014)【摘 要】径流式水电站的水头和流量随天然来水情况呈相反的关系变化,水头的变幅相对较大,水电站发出单机容量的水头一般高于发出电站装机容量的水头,水轮机的额定水头宜按发足装机容量的情况来考虑,根据来水流量保证率曲线和下游水位流量关系曲线进行演算得到的机组安装高程,更切合实际和经济。【关键词】径流式水电站 安装高程 额定水头 流量保证率曲线 新方法1 以往计算径流式水电站水轮机安装高程的方法以往计算径流式水电站水轮机安装高程的方法,是按机组额定水头计算吸出高度、并根据装机台数确定设计尾水位,最终计算安装高程。 立

2、轴反击式水轮机安装高程是指导叶中心高程;卧轴水轮机安装高程是指主轴中心高程。不同装置方式的水轮机安装高程计算公式有别,水电站机电设计手册 水力机械中给出了水轮机安装高程计算的公式。立轴混流式水轮机安装高程按公式(1)计算:A=W + Hs + b0/2 (1)立轴轴流式水轮机安装高程按公式(2)计算:A=W + Hs + X D1 (2)卧轴反击式(包括混流式和贯流式)水轮机安装高程按公式(3)计算:A=W + Hs D1/2 (3) 上述公式中:A 水轮机安装高程(m); w 电站设计尾水位(m); Hs 机组吸出高度(m),计算公式见下述;b0 导叶高度(m);D1 转轮直径(m);X 轴

3、流式水轮机高度系数,依转轮型号不同而异。对于立轴轴流式水轮机来说,为了简便起见,其安装高程(A )也常按转轮中心线确定,此时不必计算XD1,但应特别注明。机组吸出高度Hs按公式(4)或公式(5)计算:Hs 10 - /900 - KM H (4)Hs hs- /900 (5) 式中:电站所在地的海拔高程(m); M转轮模型汽蚀系数,根据模型试验得到; H净水头(m),一般按电站设计水头计算,对轴流式水轮机还应用最小水头,对混流式水轮机还应用最大水头及对应的M进行复核; K 电站装置汽蚀系数Z与转轮模型汽蚀系数M之比值,简称汽蚀安全系数,K =Z/M;K值与机组过流水沙条件、转轮材质、电站运行水

4、头和转轮模型试验方法等有关。 hs计算理论吸出高度(m), hs=10 - KM H对于某一水电站来说,根据已知的水头范围和单机容量选定水轮机型号后,可以基本确定机组的吸出高度Hs。Hs0时,表示水轮机转轮安装于下游尾水位之上某一高度;Hs0时,表示水轮机转轮安装于下游尾水位以下某一高度。 计算水轮机安装高程的电站设计尾水位(w),一般按下述原则考虑:1)电站装机12台时,设计尾水位一般取1台机组50%额定流量对应的下游水位;2) 电站装机36台时,设计尾水位一般取12台机组额定流量对应的下游水位或按水电站接近保证出力运行所对应的下游尾水位;3) 电站装机6台以上时,设计尾水位一般取23台机组

5、额定流量对应的下游水位或按水电站接近保证出力运行所对应的下游尾水位; 2 径流式水电站的特性及新计算方法的启示径流式水电站的水库无调节性,水头和流量随天然来水情况而变化,且水头和流量的变化呈相反的关系,水头的相对变化速度较大,即当来水流量增大时,下游水位随之抬高,相应地电站水头减小;而当来水流量减小时,下游水位随之降低,电站水头增加。机组运行时适应其特点,在丰水期当天然来水流量大于或等于电站装机的水轮机过流量时,机组全部投入运行,并在出力限制线上运行;而在枯水期当天然来水流量小于电站装机的最大过流量时,机组的投入和退出运行按等负荷分配原则,使机组在较高效率区内运行,此时,每台机组不一定处在额定

6、容量工况运行。从径流式水电站的水头、流量特性以及机组投入或退出运行的情况来看,水电站发出单机容量的水头要高于发出电站装机容量的水头,因此,用装机容量来选择径流式水电站水轮机的额定水头是比较合适的,也就是说,水轮机的额定水头宜按发足装机容量的情况来考虑,而这种情况往往是出现在弃水量不大的丰水期。此时的下游水位一般比较高,相应地机组吸出高度Hs值较大,从而水轮机安装高程应较高。通过上述分析,水头变幅较大的径流式水电站水轮机安装高程如按上述公式(1)公式(5)计算时,会导致安装高程计算值比实际运行情况偏小,从而增加了土建工程量和投资。根据径流式水电站的特点,对电站来水情况进行概率分析,并对水头、流量

7、和出力的实际情况进行运行工况组合,即根据流量保证率曲线和下游水位流量关系曲线进行演算,可以得出比较合理的机组计算安装高程。3 算例3.1 某电站基本资料和计算结果1)基本资料某径流式电站的水库正常蓄水位73m,安装4台轴流式水轮机,型号为ZZ560a LH 410,单机额定流量Q=117.9m3/s,一台机组满负荷发电流量时下游尾水位为58.21m,最大水头15.64m,水轮机额定水头11.8m,最小水头6.6m,额定水头下机组额定出力11400kW,机组转速125 r/min。为节省篇幅,来水流量保证率曲线和下游水位流量关系曲线未附,使用数据列如附表中。水轮机转轮采用不锈钢材料,且水头较低,

8、计算中的汽蚀安全系数K 取1.05 ,表中的安装高程均计算至转轮中心线。2)计算结果按以往方法的计算成果如下:水轮机额定水头11.8m,计算理论吸出高度hs=-0.16m,按一台机组满负荷流量的下游水位58.21m为设计尾水位(W),进行水轮机安装高程(A)计算:A=W + hs- /900 = 58.21-0.16-0.067=57.98m按来水流量保证率曲线和下游水位流量关系曲线进行演算的计算方法,其计算结果见附表。按新方法计算的水轮机安装高程(A)为59.71m。3.2 两种方法计算结果的比较与分析从附表中计算结果可以看出如下特点:1) 按水轮机额定水头计算的hS值为最低值,说明按设计工

9、况点的额定水头计算的hS值能够满足汽蚀性能的要求;2) 随着站址来水流量的加大,电站净水头逐渐减小,且减幅较大;3) 电站净水头计算安装高程(HA )数据关系表明,转轮安装高程的最低值不在设计工况点,而是在离开额定水头较远的较高水头处。这说明由于受河床断面等因素影响,最低的机组安装高程不一定呈现在设计工况点,有可能出现在其他位置,如本算例中出现在净水头14.3m处。按以往计算方法得出的机组安装高程为57.98m,而按本文介绍的新方法得出的机组安装高程为59.71m,相应抬高了1.73m(即59.71-57.98=1.73m),可以减少主机段的开挖和混凝土工程量,相应缩短工期、节省投资。由此说明

10、,径流式水电站按实际运行工况演算而得的机组安装高程,更切合实际和经济。4选择机组安装高程应考虑的其他因素上述是考虑机组汽蚀性能计算合理的吸出高度,从而得到机组计算安装高程的方法。在最终确定机组安装高程时,还应使流道进出口具有一定的淹没深度要求。如贯流式灯泡机组进出水流道为卧式布置,由于机组过流量和流道尺寸大,尾水管出口顶面相应地比较高,所以其安装高程的确定,需要满足两个条件,其一是根据汽蚀性能计算合理的吸出高度,其二是考虑机组在最枯流量下运行时,尾水管出口顶面应有一定的淹没深度,应大于V2/2g值(V为尾水管出口断面的平均流速),并不得小于0.5m。另外值得指出的是,在进行机组安装高程计算时,

11、有必要对一些特殊情况加以考虑。例如,有些电站的机组往往因资金或工程规划等原因需要分期安装,在建设初期只能投产部分机组,而当实际天然来水大于设计运行的机组过流量,便要求机组满负荷运行,机组的汽蚀系数比正常情况下多台机组(对安装多台机组情况,此时不需要每台机组带满负荷)运行时大,此时机组安装高程就相应地应低一些。水轮机合理的吸出高度Hs值,对减轻水轮机的汽蚀具有重要作用,因此,在选择水轮机型号时,机组的汽蚀性能是应考虑的一个十分重要因素。对某一选定的水轮机转轮来说,虽然Hs的大小不是影响机组汽蚀破坏的唯一因素,但将直接影响厂房的开挖和混凝土等项工程量及投资。因此,对大中型电站来说,在选择水轮机安装

12、高程时应根据机组运行条件,进行必要的经济比较。5 结束语按设计工况点的额定水头来计算的HS值能够满足机组汽蚀性能的要求。根据径流式水电站的来水流量保证率曲线和下游水位流量关系曲线进行演算得到的机组安装高程,更切合实际和经济。 本文介绍的新方法仅适用于水头变幅较大的径流式水电站(通常如河床式电站和渠道电站等)。对于水头变幅不大的长距离引水式电站(有时也是径流式电站)和蓄水式水库电站,仍应采用以往的方法计算水轮机安装高程。6附表 水轮机安装高程计算表电站流量Q(m3/s)频率(%)下游水位W(m)水头损失H(m)净水头H(m)出力(1台机)(kW)电站出力(kW)单机引用流量QT(m3/s)单位转

13、速n/1(r/min)单位流量Q/1(L/s)模型汽蚀系数M计算理论吸出高度hs(m)计算安装高程A(m)4099.157.420.02315.5573200320026129.93926093.157.740.06615.1945900590046131.57028087.357.970.13514.8958400840076132.811711008258.180.23314.587105601056086134.21339.50.50+2.3460.4511079.358.280.2914.43114001180094134.914720.53+1.9760.1812076.858.38

14、0.3014.32114001300095135.414930.57+1.459.7118062.758.820.3513.83114001965098137.815680.58+1.5760.3222051.959.10.4013.51140023360101139.516350.63+1.0760.1026041.959.310.4213.221140027930103.514116930.65+0.9760.2130031.659.510.4513.071140031600104.7141.817030.65+1.0860.5235020.559.770.5012.72114003560

15、0107.8143.617970.70+0.660.304809.360.370.65911.971114004510011614819950.81-0.1860.125805.960.40.6511.9411140045000116.2148.320000.81-0.1660.1781060.540.65911.8011140044950118149.220430.82-0.1660.318802.160.610.65911.7311133044750117.8149.620460.82-0.160.449801.460.890.65911.4511094043130117.4151.420640.82+0.1460.9620050.16363.340.6599.001739029880102.5170.820320.81+2.365.57注:本算例来自小型水电站 水力机械(第二版)p94p95,对表中个别数据进行了订正。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1