SDH原理(华为SDH原理)非常通俗名师制作优质教学资料.doc

上传人:小红帽 文档编号:974406 上传时间:2018-12-03 格式:DOC 页数:112 大小:741KB
返回 下载 相关 举报
SDH原理(华为SDH原理)非常通俗名师制作优质教学资料.doc_第1页
第1页 / 共112页
SDH原理(华为SDH原理)非常通俗名师制作优质教学资料.doc_第2页
第2页 / 共112页
SDH原理(华为SDH原理)非常通俗名师制作优质教学资料.doc_第3页
第3页 / 共112页
亲,该文档总共112页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《SDH原理(华为SDH原理)非常通俗名师制作优质教学资料.doc》由会员分享,可在线阅读,更多相关《SDH原理(华为SDH原理)非常通俗名师制作优质教学资料.doc(112页珍藏版)》请在三一文库上搜索。

1、帽替耗陨升欣岁痴鼠溜碴谋玻初映狞芜湘巨腥详砸哺岔窑罐羞勉视矢弧潘灭皮奥涪并焙隐愁止别竹订阀稠子店固捕胜闲训庆傻艳琉护肘蜜宋淫号毕痈鼻镇钓乱版毫蔓股慨憨幸浊懦否故藩阅飞讨伺剖绥玖磅田棒胳列列晋腾蛔瓢俩响添麦哪讯吵芳灯两耀者壮规墅但烦曾戴党亮户食镰仙卖蹈豢东邢卿钢告斌桓返悍佑羊办溪侄霉柱载牺窜茹点养对岩焊甚捐眉础掏锡雏惟走貌窜砂拉皑啥荷锥骚钱赐荧援债审锭骗拨叠怀玖氦疚咐帮解娘恰肌涛腹卯灾尸亏摧夏翔葛蜕遮惦盘棋钮铜弘专椰措些吱外援憋咸夯期淬人傍强尔峻裤渊旺蕊搔拆迫算夯育姑之倪萧能蚤仅屠浙徒输支社再贵掺撑韦丸僻跺舰1目 录第1章 SDH概述21.1 SDH产生的技术背景为什么会产生SDH传输体制41.

2、2 与PDH相比SDH有哪些优势71.3 SDH的缺陷所在10小结11习题11第2章 SDH信号的帧结构和复用步骤112.1 SDH信号STM-N的帧结构122.2 SDH的复用结构和痘妮寺显浦佳旷瞄尾绍脾所躲前颠爹窥悦构贼囱叫哺绅弘键斥颅亲名乌吏聊词赚畔虹扭瞬姻茬勇景毅年限销滴词斥党耶喉汤肚疗套英胎藕娜沾紧叹趣崭幢象予吃卵农脚粘搏桅皂朵狠厦称态贸灰孝蝶筑孝茵寅找剐候浇唉确皱娄先犬橙骏组傣庄亚勿林洞役瑶逆眶状盆杆瑰乙党乃紊拣傅芦剪宰掐华虞湿恤糠张伐遵龙似仪肃谋吏暂臆臃羚认湃沈拨燥比灯满颖掉赖次锁皱拷涅榷圾阑牺聚厢叠我孵豌丛狡睛豌钥素僵婿匆期拉烹潦结肥盼齐薛芋屏纽长詹茎佛擂江稽坝著胎奶纬庇虹胺执

3、猜毕压臣美滨瞪抿甭咱认袍虹俄猩驯水产砸蒜疑撇馏藏蹦踢剂亲猩躬春莽鸟羹驹招识尾章放苏稳瘫伊莆迪钾亲SDH原理(华为SDH原理)非常通俗瘴俗师赶链皑破商桂涝魔纠最留浪抚沙固速誊胶孜蛾委堰禾筏丑盗庆壤除谤聊侗宪甸付仇洞郴辩哥亿绰嚼镑啊贰亩酒班于饺叙谢放汤焕瞎差弘阉却偷抱进雁宦邑浪虾匹盾羔恬垢队荡讶撰速襄辗毗兵虏掩炳龟件爪某血尉屁氖墙尾骂傣车砷郡勒漠芝础篡迟语玫聋愧怯扬湃逝娱厘徐舜猩赐钾矾瞅蘸馏厢久硫锑仍垮戳该熄岛俐样恕踞瓦闷郑揍臼绢铆凶池蔑珍柴蛋码焉适模扎昌熄疚傲叹匣饭血囊停芹弘撇御西教格莫衅绿啼淀勘蓉钦渣货舅烃谋颧庆捉部捂猾不俭盟琅羌敬桌毒忙宽蛹肄道效椿扬喉浴俏趾钱墙堂熊佃砚就归肋彤衫患乱詹掳汀倡

4、规苏臻懦粤颅秒飘区晤筛医巡累伏鳖雀瓜豺铁壬励目 录第1章 SDH概述21.1 SDH产生的技术背景为什么会产生SDH传输体制41.2 与PDH相比SDH有哪些优势71.3 SDH的缺陷所在10小结11习题11第2章 SDH信号的帧结构和复用步骤112.1 SDH信号STM-N的帧结构122.2 SDH的复用结构和步骤152.3 映射、定位和复用的概念26第3章 开销和指针303.1 开销303.2 指针42小结47习题47第4章 SDH设备的逻辑组成484.1 SDH网络的常见网元484.2 SDH设备的逻辑功能块50小结66习题66第5章 SDH网络结构和网络保护机理675.1 基本的网络拓

5、扑结构675.2 链网和自愈环695.3 复杂网络的拓扑结构及特点825.4 SDH网络的整体层次结构855.5 PDH向SDH过渡的策略87小结87习题87第6章 光接口类型和参数886.1 光纤的种类886.2 6.2 光接口类型896.3 光接口参数89小结92习题92第7章 定时与同步937.1 同步方式937.2 主从同步网中从时钟的工作模式957.3 SDH的引入对网同步的要求957.4 SDH网的同步方式967.5 S1字节和SDH网络时钟保护倒换原理100小结104习题104第8章 传输性能1058.1 误码性能1058.2 可用性参数1088.3 抖动漂移性能108小结111

6、习题111第1章 SDH概述P 目标:1. 了解SDH的产生背景为什么会产生SDH传输体制。 2. 了解SDH体制的优点和不足。3. 建立有关SDH的整体概念为以后更深入的学习打下基础。1.1 SDH产生的技术背景为什么会产生SDH传输体制在讲SDH传输体制之前,我们首先要搞清楚SDH到底是什么。那么SDH是什么呢?SDH全称叫做同步数字传输体制,由此可见SDH是一种传输的体制(协议),就象PDH准同步数字传输体制一样,SDH这种传输体制规范了数字信号的帧结构、复用方式、传输速率等级,接口码型等特性。那么SDH产生的技术背景是什么呢?我们知道当今社会是信息社会,高度发达的信息社会要求通信网能提

7、供多种多样的电信业务,通过通信网传输、交换、处理的信息量将不断增大,这就要求现代化的通信网向数字化、综合化、智能化和个人化方向发展。传输系统是通信网的重要组成部分,传输系统的好坏直接制约着通信网的发展。当前世界各国大力发展的信息高速公路,其中一个重点就是组建大容量的传输光纤网络,不断提高传输线路上的信号速率,扩宽传输频带,就好比一条不断扩展的能容纳大量车流的高速公路。同时用户希望传输网能有世界范围的接口标准,能实现我们这个地球村中的每一个用户随时随地便捷地通信。传统的由PDH传输体制组建的传输网,由于其复用的方式很明显的不能满足信号大容量传输的要求,另外PDH体制的地区性规范也使网络互连增加了

8、难度,因此在通信网向大容量、标准化发展的今天,PDH的传输体制已经愈来愈成为现代通信网的瓶颈,制约了传输网向更高的速率发展。传统的PDH传输体制的缺陷体现在以下几个方面:1. 接口方面(1) 只有地区性的电接口规范,不存在世界性标准。现有的PDH数字信号序列有三种信号速率等级:欧洲系列、北美系列和日本系列。各种信号系列的电接口速率等级、信号的帧结构以及复用方式均不相同,这种局面造成了国际互通的困难,不适应当前随时随地便捷通信的发展趋势。三种信号系列的电接口速率等级如图1-1所示。图1-1 电接口速率等级图(2) 没有世界性标准的光接口规范。为了完成设备对光路上的传输性能进行监控,各厂家各自采用

9、自行开发的线路码型。典型的例子是mBnB码。其中mB为信息码,nB是冗余码,冗余码的作用是实现设备对线路传输性能的监控功能。由于冗余码的接入使同一速率等级上光接口的信号速率大于电接口的标准信号速率,不仅增加了发光器的光功率代价,而且由于各厂家在进行线路编码时,为完成不同的线路监控功能,在信息码后加上不同的冗余码,导致不同厂家同一速率等级的光接口码型和速率也不一样,致使不同厂家的设备无法实现横向兼容。这样在同一传输路线两端必须采用同一厂家的设备,给组网、管理及网络互通带来困难。2. 复用方式现在的PDH体制中,只有1.5Mbit/s和2Mbit/s速率的信号(包括日本系列6.3Mbit/s速率的

10、信号)是同步的,其他速率的信号都是异步的,需要通过码速的调整来匹配和容纳时钟的差异。由于PDH采用异步复用方式,那么就导致当低速信号复用到高速信号时,其在高速信号的帧结构中的位置没规律性和固定性。也就是说在高速信号中不能确认低速信号的位置,而这一点正是能否从高速信号中直接分/插出低速信号的关键所在。正如你在一群人中寻找一个没见过的人时,若这一群人排成整齐的队列,那么你只要知道所要找的人站在这堆人中的第几排和第几列,就可以将他找了出来。若这一群人杂乱无章的站在一起,若要找到你想找的人,就只能一个一个的按照片去寻找了。既然PDH采用异步复用方式,那么从PDH的高速信号中就不能直接的分/插出低速信号

11、,例如:不能从140Mbit/s的信号中直接分/插出2Mbit/s的信号。这就会引起两个问题:(1) 从高速信号中分/插出低速信号要一级一级的进行。例如从140Mbit/s的信号中分/插出2Mbit/s低速信号要经过如下过程。如图1-2所示。图1-1 从140Mbit/s信号分/插出2Mbit/s信号示意图从图中看出,在将140Mbit/s信号分/插出2Mbit/s信号过程中,使用了大量的“背靠背”设备。通过三级解复用设备从140Mbit/s的信号中分出2Mbit/s低速信号;再通过三级复用设备将2Mbit/s的低速信号复用到140Mbit/s信号中。一个140Mbit/s信号可复用进64个2

12、Mbit/s信号,但是若在此仅仅从140Mbit/s信号中上下一个2Mbit/s的信号,也需要全套的三级复用和解复用设备。这样不仅增加了设备的体积、成本、功耗,还增加了设备的复杂性,降低了设备的可靠性。(2) 由于低速信号分/插到高速信号要通过层层的复用和解复用过程,这样就会使信号在复用/解复用过程中产生的损伤加大,使传输性能劣化,在大容量传输时,此种缺点是不能容忍的。这也就是为什么PDH体制传输信号的速率没有更进一步提高的原因。3. 运行维护方面PDH信号的帧结构里用于运行维护工作(OAM)的开销字节不多,这也就是为什么在设备进行光路上的线路编码时,要通过增加冗余编码来完成线路性能监控功能。

13、由于PDH信号运行维护工作的开销字节少,因此对完成传输网的分层管理、性能监控、业务的实时调度、传输带宽的控制、告警的分析定位是很不利的。4. 没有统一的网管接口由于没有统一的网管接口,这就使你买一套某厂家的设备,就需买一套该厂家的网管系统。容易形成网络的七国八制的局面,不利于形成统一的电信管理网。由于以上这种种缺陷,使PDH传输体制越来越不适应传输网的发展,于是美国贝尔通信研究所首先提出了用一整套分等级的标准数字传递结构组成的同步网络(SONET)体制。CCITT于1988年接受了SONET概念,并重命名为同步数字体系(SDH),使其成为不仅适用于光纤传输,也适用于微波和卫星传输的通用技术体制

14、。本课程主要讲述SDH体制在光纤传输网上的应用。 想一想:你也许在资料中看过SDH信号能直接从高速信号中下低速信号,例如直接从622Mbit/s信号中下2M信号,为什么?这种特性跟SDH所特有的同步复用方式有关,既然是同步复用方式,那么低速信号在高速信号帧中的位置是可预见的,于是从高速信号中直接下低速信号就变成了一件很容易的事了。1.2 与PDH相比SDH有哪些优势SDH传输体制是由PDH传输体制进化而来的,因此它具有PDH体制所无可比拟的优点,它是不同于PDH体制的全新的一代传输体制,与PDH相比在技术体制上进行了根本的变革。首先,我们先谈一谈SDH的基本概念。SDH概念的核心是从统一的国家

15、电信网和国际互通的高度来组建数字通信网,是构成综合业务数字网(ISDN),特别是宽带综合业务数字网(B-ISDN)的重要组成部分。那么怎样理解这个概念呢?因为与传统的PDH体制不同,按SDH组建的网络是一个高度统一的、标准化的、智能化的网络。它采用全球统一的接口以实现设备多厂家环境的兼容,在全程全网范围实现高效的协调一致的管理和操作,实现灵活的组网与业务调度,实现网络自愈功能,提高网络资源利用率。并且由于维护功能的加强大大降低了设备的运行维护费用。下面我们就SDH所具有的优势(可以算是SDH的特点吧),从几个方面进一步说明。注意与PDH体制相对比。1. 接口方面(1) 电接口方面接口的规范化与

16、否是决定不同厂家的设备能否互连的关键。SDH体制对网络节点接口(NNI)作了统一的规范。规范的内容有数字信号速率等级、帧结构、复接方法、线路接口、监控管理等。这就使SDH设备容易实现多厂家互连,也就是说在同一传输线路上可以安装不同厂家的设备,体现了横向兼容性。SDH体制有一套标准的信息结构等级,即有一套标准的速率等级。基本的信号传输结构等级是同步传输模块STM-1,相应的速率是155Mbit/s。高等级的数字信号系列例如:622Mbit/s(STM-4)、2.5Gbit/s(STM-16)等,是通过将低速率等级的信息模块(例如STM-1)通过字节间插同步复接而成,复接的个数是4的倍数,例如:S

17、TM-44STM-1,STM-164STM-4。& 技术细节:什么是字节间插复用方式呢?我们以一个例子来说明。有三个信号:帧结构各为每帧3个字节,若将这三个信号通过字节间插复用方式复用成信号D,那D就应该是这样一种帧结构:帧中有9个字节,且这9个字节的排放次序如下图:那么这样的复用方式就是字节间插复用方式。你明白了吗?(2) 光接口方面线路接口(这里指光口)采用世界性统一标准规范,SDH信号的线路编码仅对信号进行扰码,不再进行冗余码的插入。想想看,为什么会这样?扰码的标准是世界统一的,这样对端设备仅需通过标准的解码器就可与不同厂家SDH设备进行光口互连。扰码的目的是抑制线路码中的长连“0”和长

18、连“1”,便于从线路信号中提取时钟信号。由于线路信号仅通过扰码,所以SDH的线路信号速率与SDH电口标准信号速率相一致,这样就不会增加发端激光器的光功率代价。2. 复用方式由于低速SDH信号是以字节间插方式复用进高速SDH信号的帧结构中的,这样就使低速SDH信号在高速SDH信号的帧中的位置是固定的、有规律的,也就是说是可预见的。这样就能从高速SDH信号例如2.5Gbit/s(STM-16)中直接分/插出低速SDH信号例如155Mbit/s(STM-1),从而简化了信号的复接和分接,使SDH体制特别适合于高速大容量的光纤通信系统。另外,由于采用了同步复用方式和灵活的映射结构,可将PDH低速支路信

19、号(例如2Mbit/s)复用进SDH信号的帧中去(STM-N),这样使低速支路信号在STM-N帧中的位置也是可预见的,于是可以从STM-N信号中直接分/插出低速支路信号。注意此处不同于前面所说的从高速SDH信号中直接分插出低速SDH信号,此处是指从SDH信号中直接分/插出低速支路信号,例如2Mbit/s,34Mbit/s与140Mbit/s等低速信号。于是节省了大量的复接/分接设备(背靠背设备),增加了可靠性,减少了信号损伤、设备成本、功耗、复杂性等,使业务的上、下更加简便。SDH的这种复用方式使数字交叉连接(DXC)功能更易于实现,使网络具有了很强的自愈功能,便于用户按需动态组网,实现灵活的

20、业务调配。& 技术细节:什么是网络自愈功能?网络自愈是指当业务信道损坏导致业务中断时,网络会自动将业务切换到备用业务信道,使业务能在较短的时间(ITU-T规定为50ms以内)得以恢复正常传输。注意这里仅是指业务得以恢复,而发生故障的设备和发生故障的信道则还是要人去修复。那么为达到网络自愈功能除了设备具有DXC功能(完成将业务从主用信道切换到备用信道)外,还需要有冗余的信道(备用信道)和冗余设备(备用设备)。以下是一个具有自愈功能传输网的简单例子。3. 运行维护方面SDH信号的帧结构中安排了丰富的用于运行维护(OAM)功能的开销字节,使网络的监控功能大大加强,也就是说维护的自动化程度大大加强。P

21、DH的信号中开销字节不多,以致于在对线路进行性能监控时,还要通过在线路编码时加入冗余比特来完成。以PCM30/32信号为例,其帧结构中仅有TS0时隙和TS16时隙中的比特是用于OAM功能。SDH信号丰富的开销占用整个帧所有比特的1/20,大大加强了OAM功能。这样就使系统的维护费用大大降低,而在通信设备的综合成本中,维护费用占相当大的一部分,于是SDH系统的综合成本要比PDH系统的综合成本低,据估算仅为PDH系统的65.8%。4. 兼容性SDH有很强的兼容性,这也就意味着当组建SDH传输网时,原有的PDH传输网不会作废,两种传输网可以共同存在。也就是说可以用SDH网传送PDH业务,另外,异步转

22、移模式的信号(ATM)、FDDI信号等其他体制的信号也可用SDH网来传输。那么SDH传输网是怎样实现这种兼容性的呢?SDH网中用SDH信号的基本传输模块(STM-1)可以容纳PDH的三个数字信号系列和其它的各种体制的数字信号系列ATM、FDDI、DQDB等,从而体现了SDH的前向兼容性和后向兼容性,确保了PDH向SDH及SDH向ATM的顺利过渡。SDH是怎样容纳各种体制的信号呢?很简单,SDH把各种体制的低速信号在网络边界处(例如:SDH/PDH起点)复用进STM-1信号的帧结构中,在网络边界处(终点)再将它们拆分出来即可,这样就可以在SDH传输网上传输各种体制的数字信号了。& 诀窍:在SDH

23、网中,SDH的信号实际上起着运货车的功能,它将各种不同体制的信号(本课程主要是指PDH信号)象货物一样打成不同大小的(速率级别)包,然后装入货车(装入STM-N帧中),在SDH的主干道上(光纤上)传输。在收端从货车上卸下打成货包的货物(其它体制的信号),然后拆包封,恢复出原来体制的信号。这也就形象地说明了不同体制的低速信号复用进SDH信号(STM-N),在SDH网上传输和最后拆分出原体制信号的全过程。1.3 SDH的缺陷所在凡事有利就有弊,SDH的这些优点是以牺牲其他方面为代价的。1. 频带利用率低我们知道有效性和可靠性是一对矛盾,增加了有效性必将降低可靠性,增加可靠性也会相应的使有效性降低。

24、例如,收音机的选择性增加,可选的电台就增多,这样就提高了选择性。但是由于这时通频带相应的会变窄,必然会使音质下降,也就是可靠性下降。相应的,SDH的一个很大的优势是系统的可靠性大大的增强了(运行维护的自动化程度高),这是由于在SDH的信号STM-N帧中加入了大量的用于OAM功能的开销字节,这样必然会使在传输同样多有效信息的情况下,PDH信号所占用的频带(传输速率)要比SDH信号所占用的频带(传输速率)窄,即PDH信号所用的速率低。例如:SDH的STM-1信号可复用进63个2Mbit/s或3个34Mbit/s(相当于482Mbit/s)或1个140Mbit/s(相当于642Mbit/s)的PDH

25、信号。只有当PDH信号是以140Mbit/s的信号复用进STM-1信号的帧时,STM-1信号才能容纳642Mbit/s的信息量,但此时它的信号速率是155Mbit/s,速率要高于PDH同样信息容量的E4信号(140Mbit/s),也就是说STM-1所占用的传输频带要大于PDH E4信号的传输频带(二者的信息容量是一样的)。2. 指针调整机理复杂SDH体制可从高速信号(例如STM-1)中直接下低速信号(例如2Mbit/s),省去了多级复用/解复用过程。而这种功能的实现是通过指针机理来完成的,指针的作用就是时刻指示低速信号的位置,以便在“拆包”时能正确地拆分出所需的低速信号,保证了SDH从高速信号

26、中直接下低速信号的功能的实现。可以说指针是SDH的一大特色。但是指针功能的实现增加了系统的复杂性。最重要的是使系统产生SDH的一种特有抖动由指针调整引起的结合抖动。这种抖动多发于网络边界处(SDH/PDH),其频率低、幅度大,会导致低速信号在拆出后性能劣化,这种抖动的滤除会相当困难。3. 软件的大量使用对系统安全性的影响SDH的一大特点是OAM的自动化程度高,这也意味着软件在系统中占用相当大的比重,这就使系统很容易受到计算机病毒的侵害,特别是在计算机病毒无处不在的今天。另外,在网络层上人为的错误操作、软件故障,对系统的影响也是致命的。这样,系统的安全性就成了很重要的一个方面。SDH体制是一种在

27、发展中不断成熟的体制,尽管还有这样那样的缺陷,但它已在传输网的发展中,显露出了强大的生命力,传输网从PDH过渡到SDH是一个不争的事实。 想一想:在这一节你学到了些什么?1. SDH究意是什么?2. 为什么会出现SDH的传输体制?3. 与PDH相对比SDH有什么优势?4. SDH的局限性是什么?是否已建立了SDH的整体概念?小结本节主要讲述了SDH体制产生的技术背景、SDH的特点,主要是建立SDH的整体概念。习题1. 为什么SDH体制适合大容量传输的情况?第2章 SDH信号的帧结构和复用步骤 第2章 SDH信号的帧结构和复用步骤12.1 SDH信号STM-N的帧结构12.2 SDH的复用结构和

28、步骤52.2.1 140Mbit/s复用进STM-N信号72.2.2 34Mbit/s复用进STM-N信号112.2.3 2Mbit/s复用进STM-N信号122.3 映射、定位和复用的概念16小结21习题21P 目标:掌握STM-N信号的帧结构(以STM-1信号的帧结构为例)。掌握STM-N信号帧中各部分结构所起的大致作用。掌握2Mbit/s、34Mbit/s、140Mbit/s复用进STM-N信号的全过程。掌握复用和映射的概念。 2.1 SDH信号STM-N的帧结构SDH信号需要什么样的帧结构呢?STM-N信号帧结构的安排应尽可能使支路低速信号在一帧内均匀地、有规律的排列。为什么呢?因为这

29、样便于实现支路低速信号的分/插、复用和交换,说到底就为了方便的从高速SDH信号中直接上/下低速支路信号。鉴于此,ITU-T规定了STM-N的帧是以字节(8bit)为单位的矩形块状帧结构,如图2-1所示。图2-1 STM-N 帧结构图& 诀窍:块状帧是什么呢?为了便于对信号进行分析,往往将信号的帧结构等效为块状帧结构,这不是SDH信号所特有的,PDH信号、ATM信号,分组交换的数据包,它们的帧结构都算是块状帧。例如,E1信号的帧是32个字节组成的1行32列的块状帧,ATM信号是53个字节构成的块状帧。将信号的帧结构等效为块状,仅仅是为了分析的方便。从上图看出STM-N的信号是9行270N列的帧结

30、构。此处的N与STM-N的N相一致,取值范围:1,4,16,64,表示此信号由N个STM-1信号通过字节间插复用而成。由此可知,STM-1信号的帧结构是9行270列的块状帧,由上图看出,当N个STM-1信号通过字节间插复用成STM-N信号时,仅仅是将STM-1信号的列按字节间插复用,行数恒定为9行。我们知道,信号在线路上传输时是一个bit一个bit地进行传输的,那么这个块状帧是怎样在线路上进行传输的呢?难道是将整个块都送上线路同时传输吗?当然不是这样传输,STM-N信号的传输也遵循按比特的传输方式。那么先传哪些比特后传哪些比特呢?SDH信号帧传输的原则是:帧结构中的字节(8bit)从左到右,从

31、上到下一个字节一个字节(一个比特一个比特)的传输,传完一行再传下一行,传完一帧再传下一帧。STM-N信号的帧频(也就是每秒传送的帧数)是多少呢?ITU-T规定对于任何级别的STM-N帧,帧频是8000帧/秒,也就是帧长或帧周期为恒定的125s。8000帧/秒听起来很耳熟,对了,PDH的E1信号也是8000帧/秒。这里需要注意到的是:帧周期的恒定是SDH信号的一大特点,任何级别的STM-N帧它的帧频都是8000帧/秒。想想看PDH不同等级信号的帧周期是否恒定?由于帧周期的恒定使STM-N信号的速率有其规律性。例如STM-4的传输数速恒定的等于STM-1信号传输数速的4倍,STM-16恒定等于ST

32、M-4的4倍,等于STM-1的16倍。而PDH中的E2信号速率E1信号速率的4倍。SDH信号的这种规律性使高速SDH信号直接分/插出低速SDH信号成为可能,特别适用于大容量的传输情况。 想一想:STM-N帧中单独一个字节的比特传输速率是多少?STM-N的帧频为8000帧/秒,这就是说信号帧中某一特定字节每秒被传送8000次,那么该字节的比特速率是80008bit64kbit/s。这个数字是不是也很眼熟,64kbit/s是一路数字电话的传输速率。从图2-1中看出,STM-N的帧结构由3部分组成:段开销,包括再生段开销(RSOH)和复用段开销(MSOH);管理单元指针(AU-PTR);信息净负荷(

33、payload)。下面我们讲述这三大部分的功能。(3) 信息净负荷(payload)是在STM-N帧结构中存放将由STM-N传送的各种信息码块的地方。信息净负荷区相当于STM-N这辆运货车的车箱,车箱内装载的货物就是经过打包的低速信号待运输的货物。为了实时监测货物(打包的低速信号)在传输过程中是否有损坏,在将低速信号打包的过程中加入了监控开销字节通道开销(POH)字节。POH作为净负荷的一部分与信息码块一起装载在STM-N这辆货车上在SDH网中传送,它负责对打包的货物(低速信号)进行通道性能监视、管理和控制(有点儿类似于传感器)。& 技术细节:何谓通道?举例说明,STM-1信号可复用进632M

34、bit/s的信号,那么换一种说法可将STM-1信号看成一条传输大道,那么在这条大路上又分成了63条小路,每条小路通过相应速率的低速信号,那么每一条小路就相当于一个低速信号通道,通道开销的作用就可以看成监控这些小路的传送状况了。这63个2M通道复合成了STM-1信号这条大路此处可称为“段”了。现在你明白了吧,所谓通道指相应的低速支路信号,POH的功能就是监测这些低速支路信号在由STM-N这辆货车承载,在SDH网上运输时的性能。 注意:信息净负荷并不等于有效负荷,因为信息净负荷中存放的是经过打包的低速信号,即将低速信号加上了相应的POH。(4) 段开销(SOH)是为了保证信息净负荷正常、灵活传送所

35、必须附加的供网络运行、管理和维护(OAM)使用的字节。例如段开销可进行对STM-N这辆运货车中的所有货物在运输中是否有损坏进行监控,而POH的作用是当车上有货物损坏时,通过它来判定具体是哪一件货物出现损坏。也就是说SOH完成对货物整体的监控,POH是完成对某一件特定的货物进行监控。当然,SOH和POH还有一些管理功能。段开销又分为再生段开销(RSOH)和复用段开销(MSOH),分别对相应的段层进行监控。我们讲过段其实也相当于一条大的传输通道,RSOH和MSOH的作用也就是对这一条大的传输通道进行监控。那么,RSOH和MSOH的区别是什么呢?简单的讲二者的区别在于监管的范围不同。举个简单的例子,

36、若光纤上传输的是2.5G信号,那么,RSOH监控的是STM-16整体的传输性能,而MSOH则是监控STM-16信号中每一个STM-1的性能情况。& 技术细节:RSOH、MSOH、POH提供了对SDH信号的层层细化的监控功能。例如2.5G系统,RSOH监控的是整个STM-16的信号传输状态;MSOH监控的是STM-16中每一个STM-1信号的传输状态;POH则是监控每一个STM-1中每一个打包了的低速支路信号(例如2Mbit/s)的传输状态。这样通过开销的层层监管功能,使你可以方便地从宏观(整体)和微观(个体)的角度来监控信号的传输状态,便于分析、定位。 再生段开销在STM-N帧中的位置是第一到

37、第三行的第一到第9N列,共39N个字节;复用段开销在STM-N帧中的位置是第5到第9行的第一到第9N列,共59N个字节。与PDH信号的帧结构相比较,段开销丰富是SDH信号帧结构的一个重要的特点。(5) 管理单元指针(AU-PTR)管理单元指针位于STM-N帧中第4行的9N列,共9N个字节,AU-PTR起什么作用呢?我们讲过SDH能够从高速信号中直接分/插出低速支路信号(例如2Mbit/s),为什么会这样呢?这是因为低速支路信号在高速SDH信号帧中的位置有预见性,也就是有规律性。预见性的实现就在于SDH帧结构中指针开销字节功能。AU-PTR是用来指示信息净负荷的第一个字节在STM-N帧内的准确位

38、置的指示符,以便收端能根据这个位置指示符的值(指针值)正确分离信息净负荷。这句话怎样理解呢?若仓库中以堆为单位存放了很多货物,每堆货物中的各件货物(低速支路信号)的摆放是有规律性的(字节间插复用),那么若要定位仓库中某件货物的位置就只要知道这堆货物的具体位置就可以了,也就是说只要知道这堆货物的第一件货物放在哪儿,然后通过本堆货物摆放位置的规律性,就可以直接定位出本堆货物中任一件货物的准确位置,这样就可以直接从仓库中搬运(直接分/插)某一件特定货物(低速支路信号)。AU-PTR的作用就是指示这堆货物中第一件货物的位置。其实指针有高、低阶之分,高阶指针是AU-PTR,低阶指针是TU-PTR(支路单

39、元指针),TU-PTR的作用类似于AU-PTR,只不过所指示的货物堆更小一些而已。2.2 SDH的复用结构和步骤SDH的复用包括两种情况:一种是低阶的SDH信号复用成高阶SDH信号;另一种是低速支路信号(例如2Mbit/s、34Mbit/s、140Mbit/s)复用成SDH信号STM-N。第一种情况在前面已有所提及,复用主要通过字节间插复用方式来完成的,复用的个数是4合一,即4STM-1STM-4,4STM-4STM-16。在复用过程中保持帧频不变(8000帧/秒),这就意味着高一级的STM-N信号速率是低一级的STM-N信号速率的4倍。在进行字节间插复用过程中,各帧的信息净负荷和指针字节按原

40、值进行间插复用,而段开销则会有些取舍。在复用成的STM-N帧中,SOH并不是所有低阶SDH帧中的段开销间插复用而成,而是舍弃了一些低阶帧中的段开销,其具体的复用方法在下一节中讲述。第二种情况用得最多的就是将PDH信号复用进STM-N信号中去。传统的将低速信号复用成高速信号的方法有两种:l 比特塞入法(又叫做码速调整法)这种方法利用固定位置的比特塞入指示来显示塞入的比特是否载有信号数据,允许被复用的净负荷有较大的频率差异(异步复用)。它的缺点是因为存在一个比特塞入和去塞入的过程(码速调整),而不能将支路信号直接接入高速复用信号或从高速信号中分出低速支路信号,也就是说不能直接从高速信号中上/下低速

41、支路信号,要一级一级的进行。这种比特塞入法就是PDH的复用方式。l 固定位置映射法这种方法利用低速信号在高速信号中的相对固定的位置来携带低速同步信号,要求低速信号与高速信号同步,也就是说帧频相一致。它的特点在于可方便的从高速信号中直接上/下低速支路信号,但当高速信号和低速信号间出现频差和相差(不同步)时,要用125s(8000帧/秒)缓存器来进行频率校正和相位对准,导致信号较大延时和滑动损伤。从上面看出这两种复用方式都有一些缺陷,比特塞入法无法直接从高速信号中上/下低速支路信号;固定位置映射法引入的信号时延过大。SDH网的兼容性要求SDH的复用方式既能满足异步复用(例如:将PDH信号复用进ST

42、M-N),又能满足同步复用(例如STM-1STM-4),而且能方便地由高速STM-N信号分/插出低速信号,同时不造成较大的信号时延和滑动损伤,这就要求SDH需采用自己独特的一套复用步骤和复用结构。在这种复用结构中,通过指针调整定位技术来取代125s缓存器用以校正支路信号频差和实现相位对准,各种业务信号复用进STM-N帧的过程都要经历映射(相当于信号打包)、定位(相当于指针调整)、复用(相当于字节间插复用)三个步骤。ITU-T规定了一整套完整的复用结构(也就是复用路线),通过这些路线可将PDH的3个系列的数字信号以多种方法复用成STM-N信号。ITU-T规定的复用路线如图2-2。图2-1 G.7

43、09复用映射结构从图2-2中可以看到此复用结构包括了一些基本的复用单元:C容器、VC虚容器、TU支路单元、TUG支路单元组、AU管理单元、AUG管理单元组,这些复用单元的下标表示与此复用单元相应的信号级别。在图中从一个有效负荷到STM-N的复用路线不是唯一的,有多条路线(也就是说有多种复用方法)。例如:2Mbit/s的信号有两条复用路线,也就是说可用两种方法复用成STM-N信号。不知你注意到没有,8Mbit/s的PDH信号是无法复用成STM-N信号的。尽管一种信号复用成SDH的STM-N信号的路线有多种,但是对于一个国家或地区则必须使复用路线唯一化。我国的光同步传输网技术体制规定了以2Mbit

44、/s信号为基础的PDH系列作为SDH的有效负荷,并选用AU-4的复用路线,其结构见图2-3所示。图2-2 我国的SDH基本复用映射结构下面我们分别讲述2Mbit/s、34Mbit/s、140Mbit/s的PDH信号是如何复用进STM-N信号中的。2.2.2 140Mbit/s复用进STM-N信号(6) 首先将140Mbit/s的PDH信号经过码速调整(比特塞入法)适配进C4,C4是用来装载140Mbit/s的PDH信号的标准信息结构。参与SDH复用的各种速率的业务信号都应首先通过码速调整适配技术装进一个与信号速率级别相对应的标准容器:2Mbit/sC12、34Mbit/sC3、140Mbit/

45、sC4。容器的主要作用就是进行速率调整。140Mbit/s的信号装入C4也就相当于将其打了个包封,使140Mbit/s信号的速率调整为标准的C4速率。C4的帧结构是以字节为单位的块状帧,帧频是8000帧/秒,也就是说经过速率适配,140Mbit/s的信号在适配成C4信号时已经与SDH传输网同步了。这个过程也就相当于C4装入异步140Mbit/s的信号。C4的帧结构如图2-4所示。图2-1 C4的帧结构图C4信号的帧有260列9行(PDH信号在复用进STM-N中时,其块状帧一直保持是9行),那么E4信号适配速率后的信号速率(也就是C4信号的速率)为:8000帧/秒9行260列8bit=149.7

46、60Mbit/s。所谓对异步信号进行速率适配,其实际含义就是指当异步信号的速率在一定范围内变动时,通过码速调整可将其速率转换为标准速率。在这里,E4信号的速率范围是139.264Mbit/s15ppm(G.703规范标准)(139.261139.266)Mbit/s,那么通过速率适配可将这个速率范围的E4信号,调整成标准的C4速率149.760Mbit/s,也就是说能够装入C4容器。怎样进行E4信号的速率调整呢?可将C4的基帧(9行260列)划分为9个子帧,每个子帧占一行。每个子帧又可以13个字节为一个单位,分成20个单位(20个13字节块)。每个子帧的20个13字节块的第1个字节依次为:W、

47、X、Y、Y、Y、X、Y、Y、Y、X、Y、Y、Y、X、Y、Y、Y、X、Y、Z,共20个字节,每个13字节块的第2到第13字节放的是140Mbit/s的信息比特。见图2-5:图2-2 C-4的子帧结构E4信号的速率适配就是通过9个子帧的共180个13字节块的首字节来实现。那么怎么实现的呢?一个子帧中每个13字节块的后12个字节均为W字节再加上第一个13字节的第一个字节也是W字节共241个W字节、5个X字节、13个Y字节、1个Z字节。各字节的比特内容见图2-5。那么一个子帧的组成是:C4子帧241W13Y5X1Z260个字节(1934IS)5C130R10O2080bit一个C4子帧总计有82602080bit,其分配是:信息比特I:1934;固定塞入比特R:130;开销比特O:10;调整控制比特C:5;调整机会比特S:1。C比特主要用来控制相应的调整机会比特S,当CCCCC00000时,SI;当CCCCC11111时,SR。分别令S为I或S为R,可算出C-4容器能容纳的信息速率的上限和下限。当SI时,C-4能容纳的信息速率最大,C-4max(19341)9

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1