1、目录L直流电机32 .状态空间表达式63 .对角标准型及相关分析74 .系统状态空间表达式求解85 .系统能控性和能观性86 .系统输入输出传递函数97 .两种方法判断开环稳定性98 .闭环极点配置109 .全维状态观测器设计1310 .带状态观测器的状态反应控制系统的相关跟踪图1711 .带状态观测器的闭环状态反应系统相关分析21IL结束语22现代控制理论根底结课作业选题:直流电机模型姓名:班级:测控1003学号:201002030313第I条1直流电动机的介绍节1.011.1研究的意义直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。
2、在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机那么往往应用在工业机器人系统和CNC铳床等大型工具上。1节1021.2直流电动机的根本结构直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能耍求较高的生产设备中。直流伺服电机的电枢控制:直流伺服电机一般包含3个组成局部:图1.1磁极:电机的定子局部,由磁极NS级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的鼓励线圈构成。电枢:电机的转子局部,为外表上绕有线圈的圆形铁芯,线圈与换向片
3、焊接在一起。电刷:电机定子的一局部,当电枢转动时,电刷交替地与换向片接触在一起。直流电动机的启动电动机从静止状态过渡到稳速的过程叫启动过程。电机的启动性能有以下几点要求:1)启动时电磁转矩要大,以利于克服启动时的阻转矩。2)启动时电枢电流要尽可能的小。3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。直流电动机调速可以有:(1)改变电枢电源电压;(2)在电枢回路中串调节电阻;(3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服
4、电机的电枢控制。如图1.21.2Ea定义为电枢电压(伏特la定义为电枢电流(安培)。Ra-定义为电枢电阻(欧姆)。1.a-定义为电枢电感(亨利)。Eb-定义为反电动势(伏特)。If定义为励磁电流(安培)。Tm定义为电机产生的转矩(牛顿米)Bm定义为电机和反射到电机轴上的负载的等效粘带摩擦系数(牛顿米/度秒T)Jm一定义为电机和反射到电机轴上的负载的等效转动惯量(千克米2)。节1.031.3建立数学模型电机所产生的转矩T叫正比于电枢电流I与气隙磁通的乘积,即:Tm=KfIa(l-1)而气隙磁通中又正比于鼓励电流I故式(1-1)改写为Tm=K1K2IfIa=Kla(I-2)对于激磁电流If为常数,
5、K1&I哈并为一个常数K,称为电机力矩常数。电枢电流I的正负即代表电机的正反转。当电枢转动时,在电枢中感应出与电机转轴角速度成正比的电压,称为反电动势,即draEb=Kbm=Kb-f(l-3)其中Kb称为反电动势常数。电机的速度是由电枢电压E控制,应用基尔霍夫电压定律导出电枢电流I的微分方程式为:1.a+RI+Eb=Ea(l-4)电枢电流I产生力矩,用来克服系统含负载的惯性和摩擦,可得d2mdm+Bmr=T=KIa(l-5)由式(1-3)与式(1-4)合并移项后可得:%RaIKb1di=_Ula_Em+EEa(I一6)式(1-5)移项后可得:dnK1BmN=daFm(L7)将式(1-6)与式(
6、1-7)以状态方程式来表示如下:Kbdladtlm._1B:(i+UEalUjJmjy(t)=01JJ+0Ea(I一8)令R=1、L=O.2、Kb=LBm=O.1、Jm=5、K=0.5,EUp229,代入式(1-8)可得:a - aRLK _JmKbuBmk_ 5- 5.0.1- 0.02.XlIJ-O,Xl一一 么D 那-5- 5L 0.1 - 0.02jU 5OJy=o-91、系统状态空间表达式-5-515-A=B=C=01D=M0.1-0.020U 5 O+ X-5-5x=L.l-0.02.y=oMATLAB相关源程序G=ss(A,B,C,D)a=xlx2xl-5-5x20.1-0.02
7、b=ulxl5x20c=xlx2yl01d=ulyl02、化为对角标准型并分析系统特征方程,系统特征根:2,=-4.89752=-0.1225特征向量:P =仍P2 =-0.9998 0.71580.0205 -0.6983其逆矩阵为:PT =-1.0217-0.0300-1.0473-1.4628-4.897500-0.1225求A的特征值和特征向量化A为对角线标准型变换后状态空间表达式:由于线性变换矩阵P是非奇异的,因此,状态空间表达式中的系统矩阵A与A是相似矩阵,具有相同的根本特征,行列式相同、秩相同、迹相同、特征多项式相同、特征值相同。MATLAB相关源程序P,d=eig(八)P=-0
8、99980.71580.0205-0.6983d=-4.897500-0.1225inv(P)*A*Pans二-4.8975-0.00000.0000-0.1225P*d*inv(P)ans二-5.OOOO-5.00000.1000-0.02003、系统状态空间表达式的求解在第2个处理中已将系统矩阵A转换为对角线标准型,且矩阵A的特征值互异,那么状态转移矩阵中(I)为:(l)=Pe0P1叫LOa-48975,.0O1225,1.05897+1必心侬,-0.02-48975r0.02e-(H2次-0.0218975,+1.021225设初始时间力=0,那么线性定常非齐次状态方程的解为:x(t)
9、O)(t)x(O)+j)(t-)Bu(r)dr04、系统的能控性和能观性A矩阵是2*2矩阵,即n=2(1)能控性:假设系统能控性矩阵UC=HabAe可的秩为n,那么系统状态完全能控。Uc=A用=P-25clj|_00.5rank(Uc)=2满秩,故系统可控。c-CA(2)能观性:假设系统能观测性矩阵VO=.的秩为n,那么系统状态能观。CAnT_rankiy)=2满秩,故系统可观。5、系统的输入输出传递函数MATLAB相关源程序求系统传递函数num,den=ss2tf(A,B,C,D)num=OO0.5000den=1.00005.02000.60006、系统开环稳定性分析(1)特征根方法在经
10、典控制理论中,对系统稳定性的分析基于特征方程的所有根是否分布在根平面的左半局部。所有特征根都分布在左半平面那么系统稳定;如果至少有一个特征根分布在右半平面那么系统不稳定;如果没有右半平面的根,但在虚轴上有根(即有纯虚根),那么系统是临界稳定的。在以上处理过程中已求出系统特征根为4二-4.89752=0.1225这两个特征根均分布在根平面的左半局部,故系统稳定。(2)LyaPunoV第二法由A 二-5-0.02得系统的状态方程为研究系统的稳定性时,可令U=0。显然IAIH0,故原点是系统的平衡状态。x1=-5x1-5x2X2=OJx1-0.02x2选取李氏函数为UX)=j+50x220(正定)那
11、么沿任意轨迹U(X)对时间的导数:(x)=2x1x1+100x2=TO音?-2x22(x),故根据相关定理知,平衡点(2=0,%2=。)是大范围内渐进稳定的。8、闭环极点配置(1)闭环极点配置的目的控制系统的性能主要取决于系统极点在根平面上的分布,所以通过极点配置改变极点的分布,使得闭环系统阶跃响应的上升时间比开环系统阶跃响应的上升时间缩短,从而获得所希望的动态性能。(2)闭环极点配置的方法通过选择状态反应矩阵K,通过状态反应=,-质使闭环系统的极点恰好配置在根平面上所期望的位置。(3)充要条件:系统完全能控。(4)分析过程原控制系统户=x+u状态反馈控制律=一心MB*+y=CrJ=Cr(5)
12、配置过程反应控制期望闭环极点:1=-152=-0.4原始极点:4=489752=-0.1225)加状态反应后特征方程:7(s)=M-(A-BK)期望的闭环特征方程:a(s)=(s4X”为)使以上两式S多项式对应项的系数相等,得到2个代数方程,即可求出状态反应阵K=/七二2.07610.3848(6)闭环极点配置后系统的传递函数原系统开环阶跃响应Step(G)极点配置后阶跃响应由图可看出,极点配置后阶跃响应上升时间比原系统上升时间缩短了三倍左右,故极点配置到达预期效果。MATLAB相关源程序 T=-15 -0. 4T =-15.0000-0.4000 K=acker(A, B, T)K =2.0
13、76010.3848 eig(A-B*K)ans =期望闭环极点求状态反应阵极点配置验证-15.OOOO-0.4000num,den=ss2tf(A-B*K,B,C,D)求闭环传递函数num=0-0.00000.5000den=1.000015.40006.00008、全维状态观测器设计目的在现代控制理论中,按各种最优原那么建立起来的最优控制系统、解耦系统都离不开状态反应,然而系统的状态变量不是都能用物理方法量测得到的,有些根本无法量测,因而给状态反应的物理实现造成了困难,故通过设计一个全维状态观测器实现状态重构,从而获知系统的状态变量。(2)原那么a、观测器以被观测系统的输入和输出为其输入量
14、其输出量即为原系统的一个状态渐进估计。b、被观测系统应是完全能控的。(3)分析过程原系统状态方程=Ax+观测器状态方程i=(A-LC)x+Bu+Ly(4)设计过程观测器期望极点:1=-202=-10求反应阵L:观测器特征多项式:力(s)=W-(A-LC)期望的特征多项式:U(s)=(-4总为)使以上两式S多项式对应项的系数相等,得到2个代数方程,即可求出反应阵(5)验证配置结果观测器特征多项式:/(三)=M-(A-LC求得特征根4=-20%=-10故,L阵求取正确MATLAB相关源程序:Po=-20,-10Po=-20-10L=acker(A,C,PO)1.=745.000024.9800e
15、ig(AT*C)验证观测器极点是否配置在期望极点ans=-10-20(6)形成系统状态估计器est=estim(G,L)a=xlx2xl-5-750x20.1-25b=ulxl745x224.98c=xlx2y3O1d=ulylOy2Oy3OInputgroups:NameChannelsMeasurement1Outputgroups:NameChannelsOutputEstimate1StateEstimate2,3Continuous-timemodel.(7)阶跃响应step(est)(8)分别得到输出和观测状态的传递函数tf(est)Transferfunctionfrominpu
16、ttooutput.24.98s+199.4#1:s230s200745s-110#2:s2+30s+20024.98s+199.4#3:s230s200Inputgroups:NameChannelsMeasurementOutputgroups:NameChannelsOutputEstimate1StateEstimate2,39、带状态观测器的状态反应控制系统的状态变量图跟踪正弦波T=l:300;plot(T/50,y(l:300,:);ylabel(y);IegelU1(系统观测);T=I:300;PlOt(T/50,xl(l:300,:);ylabel(xl);IegendC系统观
17、测);T=I:300;PlOt(T/50/2(1:300,:);ylabel(x2);IegendC系统观测);跟踪阶跃信号T=L500;PIOt(T/50,y(l:500,:);ylabel(y);IegendC系统观测);T=lz500jplot(T50,xl(lz500)5ylabelCxl,)51egend(,系统,观测);T=L500;PIOt(1750,x2(L500,:);ylabel(*2,);IegeIIdC系统?观测,);10、带状态观测器的闭环状态反应控制系统的相关分析带状态观测器的状态反应系统由原系统、观测器和控制器三局部组成。(1)、状态空间表达式y = Cx状态反应
18、控制律为U = r-Kx状态观测器方程为i = (A-LC)x + Bu+ Ly设能控能观测的受控系统为一由以上三式得整个闭环系统的状态空间表达式为:x=Ax-BKxBri=LCx+(A-LC-BK)x+Br即y=Cx(2)、闭环传递函数带观测器状态反应闭环系统的传递函数阵与是否采用观测器反应无关,即等于直接状态反应闭环系统的传递函数阵,即,观测器渐进给出左并不影响组合系统的特性。故,闭环传递函数G(三)=C(s-(A-BK)TB=_丝s+13.4s+5.2(3)、闭环稳定性分析由观测器构成状态反应的闭环系统,其特征多项式等于状态反应局部的特征多项式和观测局部的特征多项式的乘积,两者相互独立。
19、故可知其特征值即为状态反应局部和观测局部的特征根,即4=-20A2=-IO%=-154=-0.4均位于根平面的左半平面,故由观测器构成状态反应的闭环系统是稳定的,五、结束语(1)所作工作和内容总结本次大作业我选择的是直流电机模型,通过对直流电机的结构与原理分析,从而构造数学模型,把实际动态问题抽象出来,建立线性动态系统在状态空间的模型,然后运用现代控制理论研究该系统在输入作用下状态运动过程的规律和改变这些规律的可能性与措施;建立和揭示系统的结构性质、动态行为和性能之间的关系。主要的处理内容有列出状态空间表达式,化为对角标准型状态空间表达式并进行分析。对于线性定常系统,假设系统的特征值互异,那么
20、必存在非奇异变换阵P,经过X=&的变换,可将状态方程化为对角线标准型。系统状态空间表达式的求解。求解一个系统的状态空间表达式首先得求状态转移矩阵,线性定常系统在状态空间中任意时刻的状态是通过状态转移矩阵由初始状态在某一时刻内的转移。系统的能控性和能观性判断。状态方程描述了输入引起状态的变化过程,输出方程那么描述了由状态变化引起的输出变化,能控性和能观性分别分析输入对状态的控制能力以及输出对状态的反映能力。系统的输入输出传递函数;分别用特征根方法和LyaPUnOV第二法分析系统的开环稳定性。特征根法是基于特征方程的根是否分布在根平面左半局部来判断的;LyaPUnOV第二法判稳时要先解出平衡点然后
21、选取李氏函数进而判稳。极点配置。采用状态反应将系统的闭环极点配置到适宜的值,使得闭环统阶跃响应的上升时间比开环系统阶跃响应的上升时间缩短3倍左右。设计全维状态观测器。对于一个能观测的系统,他它的状态变量尽管不能直接量测,但是通过其输入和输出以及它们的导数,可以把它重构出来,故可设计一个状态观测器。带状态观测器的状态反应控制系统的状态变量图;状态空间表达式和闭环传递函数、闭环系统的稳定性分析。(2)遇到的问题与分析解决状态空间表达式的求解。本系统是一个线性非齐次状态方程,所以在求解时应注意到它的求解公式。观测器设计。在观测器设计时,观测器的期望极点最先选的原系统极点的3至U5倍,分别为T4和-0
22、5,但通过MATLAB仿真后,其跟踪效果很不理想,故通过不断更改期望极点,最终选择极点为-20,-10,使L阵到达较适宜的值,从而使观测器的状态变量能较快的趋向原系统的状态变量。在用MATLAB进行相关运算时,由于对MATLAB的使用不熟练,有些程序和使用不会,在图书馆借了一本基于MATLAB的现代控制书后相关编程问题得到解决。在用SimUHnk进行仿真时,出现图形不对、显示不完整的问题,在与同学交流讨论后进行了更改并解决。(3)体会通过这次大作业,我收获了很多,这些都是无法通过考试得到的,在上课期间,对于这门课一直感觉很抽象,自己看书也没看懂,它跟实际问题脱轨,所以一直没学明白,只是靠死记硬背,并不真正理解,通过这次作业,我对于现代控制理论这门课有了一个全面的掌握,通过对一个实际问题的数学建模并运用现代控制理论分析系统的状态空间描述、能控性、能观测性、稳定性分析、状态反应、状态观测器补偿和设计,对所学内容有一个全面、连贯的应用,真正的理解了这些知识点的含义、原理和方法。另一方面,我进一步掌握了MATLAB的使用,这个软件对于工科学生是一个很有用处的软件,在今后的的学习工作中都会用到,熟悉掌握它的应用是很有必要的。其次,这次作业更是加深我对WOrd软件的掌握能力,尤其是数学公式的编写,整个过程更是锻炼了我的耐心和细心。