1、第2课时正数和负数(2)教学目标:1理解有理数的意义.2会根据要求把给出的有理数分类.3了解“0”在有理数分类中的作用.4培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点.教学重点和难点:重点:了解有理数包括哪些数.难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.教学过程:一、复习引入1填空:正常水位为0m,水位高于正常水位0.2m 记作 ,低于正常水位0.3m记作 。乒乓球比标准重量重0.039g记作 ,比标准重量轻0.019g记作 ,标准重量记作 。2一个物体沿东西两个相反的方向运动时可以用正负数
2、表示它们的运动,如果向东运动4m记作4m,向西运动8m记作 ;如果7m表示物体向西运动7m,那么6m表明物体怎样运动?二、讲授新课1数的扩充:数1,2,3,4,叫做正整数;1,2,3,4,叫做负整数;正整数、负整数和零统称为整数;数,8,+5.6,叫做正分数;,3.5,叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数.2思考并回答下列问题:“0”是整数吗?是正数吗?是有理数吗?“2”是整数吗?是正数吗?是有理数吗?自然数就是整数吗?是正数吗?是有理数吗?要求学生区分“正”与“整”;小数可化为分数.3有理数的分类不同的分类标准可以将有理数进行不同的分类: 先将有理数按“整”和“分”的
3、属性分,再按每类数的“正”、“负”分,即得如下分类表: 先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表: 注:“0”也是自然数。“0”的特殊性.非负数:0或正数;非负整数:0或正整数;非正数:0或负数;非正整数:0或负整数;非负有理数:0或正有理数;非正有理数:0或负有理数.4数集:把一些数放在一起所形成的集合,叫做数的集合,简称数集。它的符号标志为 .所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集.三、例题讲解
4、 课本P6页 评析:掌握正负数的概念是解决本题的关键.四、巩固练习把下列各数填入相应集合的括号内:29,5.5,2002,1,90%,3.14,0,2,0.01,2,1(1)整数集合:29,2002,1,0,2,1 (2)分数集合: 5.5,90%,3.14, 2,0.01,(3)正数集合:29,2002,90%,3.14,1,(4)负数集合:5.5,1,2,0.01,2,(5)正整数集合:29,2002,1,(6)负整数集合:1,2,(7)正分数集合:,90%,3.14,(8)负分数集合:5.5,2,0.01,(9)正有理数集合:29,2002,90%,3.14,1,(10)负有理数集合:5.5,1,2,0.01,2,注:要正确判断一个数属于哪一类,首先要弄清分类的标准。要特别注意“0”不是正数,但是整数。在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的.五、课堂小结本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?让学生小结有理数的定义和两种分类方法.六、布置作业P7页第7题