材料力学性能期末复习资料.doc

上传人:scccc 文档编号:11175504 上传时间:2021-07-09 格式:DOC 页数:8 大小:325.50KB
返回 下载 相关 举报
材料力学性能期末复习资料.doc_第1页
第1页 / 共8页
材料力学性能期末复习资料.doc_第2页
第2页 / 共8页
材料力学性能期末复习资料.doc_第3页
第3页 / 共8页
材料力学性能期末复习资料.doc_第4页
第4页 / 共8页
材料力学性能期末复习资料.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《材料力学性能期末复习资料.doc》由会员分享,可在线阅读,更多相关《材料力学性能期末复习资料.doc(8页珍藏版)》请在三一文库上搜索。

1、材料力学性能期末复习资料第一章1、 解释下列名词。1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。2滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加应变的现象称为滞弹性,也就是应变落后于应力的现象。3循环韧性:材料吸收不可逆变形功的能力称为循环韧性。4包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后在同向加载,规定残余应力增加;反向加载,规定残余应力降低的现象。5解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。韧性:指金属材料断裂前吸收塑性变形功和断裂的能

2、力。7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。8.河流花样:是解理台阶的一种标志。9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解决理面。10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。沿晶断裂:裂纹沿晶界扩展,多数是脆必断裂。11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。答:E弹性模量G切变模量规定残余伸长率屈服强度3、

3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型为发生改变,故弹性模量对组织不敏感。4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?5、 决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前

4、产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状

5、、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。答:请大家自己重点准备.第二章一、解释下列名词: (1)应力状态软性系数材料或工件所承受的最大切应力max和最大正应力max比值,即: 【P39 P46】(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】(3)缺口敏感度缺口试样的抗拉强度bn

6、的与等截面尺寸光滑试样的抗拉强度b 的比值,称为缺口敏感度,即: 【P47 P55 】(4)布氏硬度用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。(6)维氏硬度以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。【P53 P62】二、说明下列力学性能指标的意义 (1)材料的抗压强度【P41 P48】 (2)材料的抗弯强度【P42 P50】 (3)材料的扭转屈服点【P44 P52】 (4)材料的抗扭强度【P44 P52】 (

7、5)材料的抗拉强度【P47 P55】 (6)NSR材料的缺口敏感度【P47 P55】 (7)HBW压头为硬质合金球的材料的布氏硬度【P49 P58】 (8)HRA材料的洛氏硬度【P52 P61】 (9)HRB材料的洛氏硬度【P52 P61】 (0)HRC材料的洛氏硬度【P52 P61】 (1)HV材料的维氏硬度【P53 P62】五、缺口试样拉伸时的应力分布有何特点?【P45 P53】在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态,在板中心部位处于两向拉伸平面应力状态。厚板:在缺口根部处于两向拉应力状态,缺口内侧处三向拉伸平面应变状态。无论脆性材料或塑性材料,都因机件上的缺口造成两向

8、或三向应力状态和应力集中而产生脆性倾向,降低了机件的使用安全性。为了评定不同金属材料的缺口变脆倾向,必须采用缺口试样进行静载力学性能试验。七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。【P49 P57】原理布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。维氏硬度:以两相对面夹角为136。的金刚石四棱锥作压头,计算单位面积所承受的试验力。布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均

9、性能;另一个优点是实验数据稳定,重复性强。缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度

10、试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。第三章1. 冲击韧度:U形缺口冲击吸收功 除以冲击试样缺口底部截面积所得之商,称为冲击韧度,也是度量材料冲击韧性的一种力学性能指标,用表示。P57/P67 冲击吸收功: 缺口试样冲击弯曲试验中,摆锤冲断试样失去的位能为mgH1-mgH2。此即为试样变形和断裂所消耗的功,称为冲击吸收功,以表示,单位为J。P57/P67低温脆性: 体心立方晶体金属及合金或某些密排六方晶体金属及其合金,特别是工程上常用的中、低强度结构钢(铁素体-珠光体钢)

11、,在试验温度低于某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。2. (1) :冲击吸收功。含义见上面。冲击吸收功不能真正代表材料的韧脆程度,但由于它们对材料内部组织变化十分敏感,而且冲击弯曲试验方法简便易行,被广泛采用。 :U型缺口试样冲击吸收功. :V型缺口冲击吸收功. (2)FATT50:冲击试样断口分为纤维区、放射区(结晶区)与剪切唇三部分,在不同试验温度下,三个区之间的相对面积不同。温度下降,纤维区面积突然减少,结晶区面积突然增大,材料由韧变脆。通常取结晶区面积占整个断口面积50%时的温度为,并

12、记为50%FATT,或FATT50%,t50。(新书P61,旧书P71)4. 试说明低温脆性的物理本质及其影响因素 低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂强度随温度的降低而变化不大。当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。 从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能力下降,因此材料屈服强度增加。 影响材料低温脆性的因素有(P63,P73):1晶体结构:对称性低的体心立方

13、以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。2化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。3显微组织:晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。因为 晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。 金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度

14、升高。 第4章 金属的断裂韧度 1、 名词解释低应力脆断:高强度、超高强度钢的机件 ,中低强度钢的大型、重型机件在屈服应力以下发生的断裂。张开型(型)裂纹: 拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展的裂纹。应力场强度因子 : 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子有关,对于某一确定的点,其应力分量由确定, 越大,则应力场各点应力分量也越大,这样就可以表示应力场的强弱程度,称为应力场强度因子。 “I”表示I型裂纹。小范围屈服: 塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小一个数量级以上),这就称为小范围屈服。有效屈服应力:裂纹在发生屈服时的应力。新书P7

15、3:旧P有效裂纹长度:因裂纹尖端应力的分布特性,裂尖前沿产生有塑性屈服区,屈服区内松弛的应力将叠加至屈服区之外,从而使屈服区之外的应力增加,其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响,经修正后的裂纹长度即为有效裂纹长度: a+ry。新P74;旧P。裂纹扩展K判据:裂纹在受力时只要满足 ,就会发生脆性断裂.反之,即使存在裂纹,若 也不会断裂。新P71:旧裂纹扩展能量释放率GI:I型裂纹扩展单位面积时系统释放势能的数值。P76/P88裂纹扩展G判据: ,当满足上述条件时裂纹失稳扩展断裂。P77/P89积分:有两种定义或表达式:一是线积分:二是形变功率差。P89/P101裂纹扩展判据:

16、,只要满足上述条件,裂纹(或构件)就会断裂。:裂纹张开位移。P91/P102判据:,当满足上述条件时,裂纹开始扩展。P91/P1032、说明下列断裂韧度指标的意义及其相互关系和 答: 临界或失稳状态的记作或,为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳扩展的能力。为平面应力断裂韧度,表示在平面应力条件下材料抵抗裂纹失稳扩展的能力。 它们都是型裂纹的材料裂纹韧性指标,但值与试样厚度有关。当试样厚度增加,使裂纹尖端达到平面应变状态时,断裂韧度趋于一稳定的最低值,即为,它与试样厚度无关,而是真正的材料常数。P71/P82 答:P77/P89 当增加到某一临界值时,能克服裂纹失稳扩展的

17、阻力,则裂纹失稳扩展断裂。将的临界值记作,称断裂韧度,表示材料阻止裂纹失稳扩展时单位面积所消耗的能量,其单位与相同。:是材料的断裂韧度,表示材料抵抗裂纹开始扩展的能力,其单位与GIC相同。P90/P102:是材料的断裂韧度,表示材料阻止裂纹开始扩展的能力.P91/P104判据和判据一样都是裂纹开始扩展的裂纹判据,而不是裂纹失稳扩展的裂纹判据。P91/P1043、试述低应力脆断的原因及防止方法。答: 低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹,从而使机件在低于屈服应力的情况发生断裂。 预防措施:将断裂判据用于机件的设计上,在给定裂纹尺寸的情况下,确定机件允许的最

18、大工作应力,或者当机件的工作应力确定后,根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸。5、 试述应力场强度因子的意义及典型裂纹的表达式答:新书P69旧书P80参看书中图(应力场强度因子的意义见上) 几种裂纹的表达式,无限大板穿透裂纹:;有限宽板穿透裂纹:;有限宽板单边直裂纹:当ba时,;受弯单边裂纹梁:;无限大物体内部有椭圆片裂纹,远处受均匀拉伸:;无限大物体表面有半椭圆裂纹,远处均受拉伸:A点的。 6、 试述K判据的意义及用途。答: K判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。K判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来,可直

19、接用于设计计算,估算裂纹体的最大承受能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。P71/P83 11 的意义:表示裂纹张开位移。表达式。P91/P103、 断裂韧度与强度、塑性之间的关系:总的来说,断裂韧度随强度的升高而降低。详见新P80/P93、 影响的因素:内因:、化学成分的影响;、集体相结构和晶粒大小的影响;2. 杂质及第二相的影响;、显微组织的影响。外因:、温度;、应变速率。P81/P95第五章 金属的疲劳1.名词解释;应力幅a:a=1/2(max-min) p95/p108平均应力m:m=1/2(max+min) p95/p107应力比r:r=min/max p9

20、5/p108疲劳源:是疲劳裂纹萌生的策源地,一般在机件表面常和缺口,裂纹,刀痕,蚀坑相连。P96疲劳贝纹线:是疲劳区的最大特征,一般认为它是由载荷变动引起的,是裂纹前沿线留下的弧状台阶痕迹。 P97/p110疲劳条带:疲劳裂纹的第二阶段的端口特征是具有略程弯曲并相互平行的沟槽花样,称为疲劳条带(疲劳辉纹,疲劳条纹) p113/p132驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除,当对式样重新循环加载时,则循环滑移带又会在原处再现,这种永留或再现的循环滑移带称为驻留滑移带。 P111K:材料的疲劳裂纹扩展速率不仅与应力水平有关,而且与当时的裂纹尺寸有关。K是由应力范围和a复合为应

21、力强度因子范围,K=Kmax-Kmin=Ymaxa-Ymina=Ya. p105/p120da/dN:疲劳裂纹扩展速率,即每循环一次裂纹扩展的距离。 P105疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数 p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限或疲劳寿命减小,就造成了过载损伤。 P102/p1172.揭示下列疲劳性能指标的意义疲劳强度-1,-p,-1,-1N, P99,100,103/p114 -1:对称弯曲疲劳极限;-p:对称拉压疲劳极限;-1:对称扭转疲劳极限;-1N:缺口试样疲劳极限。疲劳缺口敏感度qf P1

22、03/p118 金属材料在交变载荷作用下的缺口敏感性,常用疲劳缺口敏感度来评定。Qf=(Kf-1)/(kt-1).其中Kt为理论应力集中系数且大于一,Kf为疲劳缺口系数。 过载损伤界 P102,103/p117 由实验测定,测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次,得到不同试验点,连接各点便得到过载损伤界。 疲劳门槛值Kth P105/p120 在疲劳裂纹扩展速率曲线的区,当KKth时,da/aN=0,表示裂纹不扩展;只有当KKth时,da/dN0,疲劳裂纹才开始扩展。因此,Kth是疲劳裂纹不扩展的K临界值,称为疲劳裂纹扩展门槛值。 3.试述金属疲劳断裂的特点 p96/p10

23、9 (1)疲劳是低应力循环延时断裂,机具有寿命的断裂 (2)疲劳是脆性断裂 (3)疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感4试述疲劳宏观断口的特征及其形成过程(新书P9698及PPT,旧书P109111)答:典型疲劳断口具有三个形貌不同的区域疲劳源、疲劳区及瞬断区。(1) 疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压,故显示光亮平滑,另疲劳源的贝纹线细小。(2) 疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。特征是:断口比较光滑并分布有贝纹线。断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。贝纹线是

24、由载荷变动引起的,如机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。(3) 瞬断区是裂纹最后失稳快速扩展所形成的断口区域。其断口比疲劳区粗糙,脆性材料为结晶状断口,韧性材料为纤维状断口。6试述疲劳图的意义、建立及用途。(新书P101102,旧书P115117)答:定义:疲劳图是各种循环疲劳极限的集合图,也是疲劳曲线的另一种表达形式。意义:很多机件或构件是在不对称循环载荷下工作的,因此还需知道材料的不对称循环疲劳极限,以适应这类机件的设计和选材的需要。通常是用工程作图法,由疲劳图求得各种不对称循环的疲劳极限。1、疲劳图建立:这种图的纵坐标以表示,横坐标以表示。然后

25、,以不同应力比r条件下将表示的疲劳极限分解为和,并在该坐标系中作ABC曲线,即为疲劳图。其几何关系为:(用途):我们知道应力比r,将其代入试中,即可求得和,而后从坐标原点O引直线,令其与横坐标的夹角等于值,该直线与曲线ABC相交的交点B便是所求的点,其纵、横坐标之和,即为相应r的疲劳极限,。2、疲劳图建立:这种图的纵坐标以或表示,横坐标以表示。然后将不同应力比r下的疲劳极限,分别以和表示于上述坐标系中,就形成这种疲劳图。几何关系为:(用途):我们只要知道应力比r,就可代入上试求得和,而后从坐标原点O引一直线OH,令其与横坐标的夹角等于,该直线与曲线AHC相交的交点H的纵坐标即为疲劳极限。8试述

26、影响疲劳裂纹扩展速率的主要因素。(新书P107109,旧书P123125)答:1、应力比r(或平均应力)的影响:Forman提出:残余压应力因会减小r,使降低和升高,对疲劳寿命有利;而残余拉应力因会增大r,使升高和降低,对疲劳寿命不利。2、过载峰的影响:偶然过载进入过载损伤区内,使材料受到损伤并降低疲劳寿命。但若过载适当,有时反而是有益的。3、材料组织的影响:晶粒大小:晶粒越粗大,其值越高,越低,对疲劳寿命越有利。组织:钢的含碳量越低,铁素体含量越多时,其值就越高。当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时,可以提高钢的,降低。喷丸处理:喷丸强化也能提高。9试述疲劳微观断口的主

27、要特征。(新书P113P114,旧书P132)答:断口特征是具有略呈弯曲并相互平行的沟槽花样,称疲劳条带(疲劳条纹、疲劳辉纹)。疲劳条带是疲劳断口最典型的微观特征。12试述金属表面强化对疲劳强度的影响。(新书P117P118,旧书P135P136)答:表面强化处理可在机件表面产生有利的残余压应力,同时还能提高机件表面的强度和硬度。这两方面的作用都能提高疲劳强度。表面强化方法,通常有表面喷丸、滚压、表面淬火及表面化学热处理等。(1) 表面喷丸及滚压 喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面,使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束,又在塑变层内产生残余压应力。 表面滚压和喷丸的作用相似,只是其压应力层深度较大,很适于大工件;而且表面粗糙度低,强化效果更好。(2) 表面热处理及化学热处理 他们除能使机件获得表硬心韧的综合力学性能外,还可以利用表面组织相变及组织应力、热应力变化,使机件表面层获得高强度和残余压应力,更有效地提高机件疲劳强度和疲劳寿命。8

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1