混凝土裂缝产生的原因.doc

上传人:scccc 文档编号:12403625 上传时间:2021-12-03 格式:DOC 页数:12 大小:34.50KB
返回 下载 相关 举报
混凝土裂缝产生的原因.doc_第1页
第1页 / 共12页
混凝土裂缝产生的原因.doc_第2页
第2页 / 共12页
混凝土裂缝产生的原因.doc_第3页
第3页 / 共12页
混凝土裂缝产生的原因.doc_第4页
第4页 / 共12页
混凝土裂缝产生的原因.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《混凝土裂缝产生的原因.doc》由会员分享,可在线阅读,更多相关《混凝土裂缝产生的原因.doc(12页珍藏版)》请在三一文库上搜索。

1、混凝土裂缝产生的原因混凝土裂缝产生的原因 混凝土,特别是商品混凝土浇筑以后,有时会发生有裂纹,是什么原 因是混凝土构件产生裂纹呢?主要有以下原因材料方面的影响 国内外曾作过一系列劈裂抗拉强度试验和周向拉伸试验, 对混凝土的 早期抗拉强度和极限拉伸随龄期的变化规律进行了分析, 对于普通混 凝土其强度主要取决于水泥是强度及其与骨料表面的粘结强度, 而这 又与水泥标号、水灰比及骨料性质有密切联系。通过计算规律、 数据及工程实践探索, 我们总结了以下几个是裂缝产 生的材料方面的因素:1 水泥 普通混凝土的强度朱育取决于水泥石的强度及其与骨料表面的粘结 强度。混凝土的收缩也有很大部分来来源于水泥石的收缩

2、, 水泥石的 结构是由未水化的水泥颗粒、 水化产物及孔隙组成。 水化产物晶体共 生交错,形成结晶网络结构,在水泥石中起重要的骨架作用,相互接 触而发展了水泥石的强度。 但其中内部的孔隙会影响水泥石强度的发 展。由于水泥石的孔结构由水泥细度与颗粒组成决定, 所以水泥颗粒 越细,其水化、凝结硬化速度越快,水化也越充分,有利于其早期和 后期强度的提高。根据前苏联的试验资料, 水泥性质对混凝土的收缩影响很小, 即使净专业文档供参考,如有帮助请下载。水泥浆表现出较大的收缩也不意味着由这种水泥制造的混凝土的收 缩也大。对于水泥细度,只是当粒径大于 15 的水泥由于不易水化, 对收缩起约束作用之外, 更细的

3、水泥并不影响混凝土的收缩。 一般情 况,水泥的化学成分对收缩并无影响, 只是当石膏产量不足才表现出 较大的收缩。目前,在高层建筑施工中,主要由于随着混凝土技术的 发展,混凝土强度也由原来 C25 、C30 发展到现在 C50 、C60 ,混 凝土强度等级的提高, 水泥用量也随之增加, 直接导致水化热的提高, 增加了早期混凝土的热胀,从而加大了混凝土温度降低后的冷缩。 2 骨料水泥石与骨料的粘结力与骨料的表面情况有关,骨料的表面粗糙, 则与水泥石粘结力较大, 故在原材料及坍落度相同的情况下, 用碎石 比用卵石强度来的高。增大骨料粒径,可以减少用水量,而使混凝土 的收缩和泌水随之减少。同时骨料本身

4、的强度一般比水泥石强度高 (轻骨料除外),所以不直接影响混凝土强度,但若骨料经风化等作 用而强度降低时,则用其配制的混凝土强度也降低。 混凝土中骨料重量与水泥重量之比称为骨灰比。 骨灰比对 35Mpa 以 上的混凝土强度影响较大。 在相同水灰比和坍落度下, 混凝土强度随 骨灰比的增大而提高,因为骨料增多后表面积增大,吸水量也增加, 从而降低了有效水灰比, 使混凝土强度提高。 另外水泥砂浆相对含量 减少,致使混凝土内总孔隙率体积减少, 也有利于混凝土强度的提高。 在混凝土内部, 骨料对水泥石的收缩起约束作用。 混凝土的收缩对净 水泥浆收缩的比取决于混凝土的骨料含量 V (以体积的%计)。骨料 专

5、业文档供参考,如有帮助请下载。含量越大则收缩越小 在实际施工中考虑到泵送混凝土的要求, 规范对骨料的粒径和级配都 做出了限制。现在一般商品混凝土的砂率在 40% 以上,比普通混凝 土的用砂量高, 石子粒径 5-25mm ,比普通混凝土的石子粒径要小。 由于细骨料的增多, 减弱了混凝土之间的连接能力, 增大了裂缝产生 的机会。3 水灰比、坍落度 水灰比是混凝土进行拌和时候的一个敏感指标。 这个指标对混凝土的 各项影响最大。在采用同一种水泥(品种和标号相同)时,混凝土的强度主要取决于 毛细管孔隙率或胶空比, 这些参数都难于测定, 但是充分密实的混凝 土在任何水化程度下毛细管孔隙率可由水灰比所确定。

6、 在水泥标号相 同情况下,水灰比越小,水泥石强度越高,与骨料的粘结力也越大, 混凝土的强度也越高。 同时为考虑对混凝土和易性、 水泥用量等方面 的要求,水灰比又不易太小,否则将影响强度的发展。当混凝土承受 干燥作用时,首先是大空隙及粗毛细孔中的自由水分因物理力学结合 遭到破坏而蒸发, 这种失水不引起收缩。 环境的干燥作用使得细空中 的水产生毛细水压力,水泥石承受这种压力后产生压缩变形而收缩, 即“毛细收缩 ”,使混凝土收缩变形的一部分。待毛细水蒸发后,开始 进一步蒸发物理 化学结合的吸附水, 首先蒸发引起显著的水泥石 压缩,产生 “吸附收缩”,是收缩变形的主要部分。混凝土的收缩来源 于水泥石的

7、收缩,水灰比大,收缩大。所以较高的水灰比可能会有两 种影响:养护前期,孔隙水处于饱和阶段,收缩量小,但是后期如果 养护条件恶化(比如拆模后的暴晒) ,导致孔隙水丧失过快,相反会 引起混凝土收缩量的增大。但目前为便于泵送混凝土,商品混凝土的坍落度一般在 10cm 以上, 有一些高层建筑施工时, 坍落度甚至要超过 20cm ,所以水灰比一般 在 0.6 左右,造成混凝土在硬化过程中 , 由于水分蒸发和胶凝体失水后 引起干缩量增大,产生裂缝的概率也加大。尽管采用减水剂后,可降 低水灰比,也有利于泵送,但由于商品混凝土的现场质量控制不严, 出现随意向已拌好的混凝土中加水的现象并在加水以后又不进行二 次

8、搅拌,造成混凝土水灰比增大,严重影响混凝土拌合物的质量,使 混凝土产生收缩裂缝的机会大大增加。4 外加剂、外掺料 在混凝土中加入各种外加剂可以使混凝土获得一些必要的特性。 目前 商品混凝土中应用的外加剂种类繁多,主要有:加气剂、塑化剂、高 效减水剂、矿物质掺料等。掺加加气剂对混凝土有两种作用: 从成分方面有增加收缩的作用; 另 一方面可以减少含水量, 又减少收缩的作用。 二者共同作用对收缩几 乎不产生明显影响。在混凝土中掺加各种塑化剂, 高效减水剂可以在保证其他组分用量不 变的前提和保持良好的工作性条件下, 大幅度减少用水量, 降低水灰 比,一方面可提高早期强度和后期强度,另一方面可以减少收缩

9、。但 过量的掺加塑化剂和减水剂又会显著增加收缩。近代混凝土中掺加活性粉料 粉煤灰的研究应用获得很大发展。 由 于可提高工作性,降低水化热(掺水泥用量的 15% ,降低水化热的 15% 左右),得到了大量应用,特别是泵送大体积混凝土。但同时应 当注意到掺粉煤灰的混凝土早期抗拉强度及早期极限拉伸有少量的 降低(约 10%-20% ),后期强度不受影响。这是因为粉煤灰混凝土 的强度主要取决于粉煤灰的火山灰效应, 粉煤灰在混凝土中当氢氧化 钙薄膜覆盖在粉煤灰颗粒表面上时, 就开始发生火山灰效应。 但由于 氢氧化钙薄膜与粉煤灰颗粒表面之间存在着水解层, 钙离子要通过水 解层与粉煤灰的活性组分反应, 反应

10、产物在层内逐渐聚集, 水解层未 被火山灰反应产物充满到某种程度时, 不会使强度有较大增长, 随着 水解层被反应产物充满, 粉煤灰颗粒和水泥水化产物之间逐步形成牢 固联系,从而导致混凝土强度、不透水性和耐磨性的提高。对于收缩 的影响根据德国所做实验提供的数据分析: 掺加粉煤灰后, 通常会增 大水泥浆的体积, 所以用水量如果保持不变, 则干缩可能会稍微增大, 但如果用水量因掺加粉煤灰而减小, 则由于浆体增大的收缩可得到补 偿.超细矿物掺料则对高强混凝土的性能影响更大, 作为高强掺和料的超 细矿粉具有较高的比表面积和活性, 与水泥掺和使用后的水化产物主 要为水化硅酸钙凝胶和水化铝酸钙,水化速度快,其

11、体积减缩值大。 以硅粉为例, 化合后引起体积减缩为 9.04% ,. 粉煤灰和矿渣体积减 缩分别为 16.98% 和 13.34% 。因此超细矿粉的掺入增加了高强混 凝土的自收缩值,也增加了它出现收缩裂缝的机率。专业文档供参考,如有帮助请下载。混凝土收缩的影响 混凝土因收缩而导致的裂缝是混凝土裂缝最主要的形成原因。 裂缝基 本是由于水分蒸发和浆体收缩,收缩应力与混凝土的抗拉强度引起 的,混凝土的收缩裂缝大体上有以下几种类型:1. 塑性收缩裂缝 塑性收缩是混凝土在初凝前的塑性阶段失水形成的, 一种情况是新浇 筑的混凝土表面泌水, 在室外会很快的蒸发; 另一种情况是由于新拌 混凝土颗粒之间的空间充

12、满了水, 浇筑后的混凝土表面受风吹、 日晒、 外部的高温度和低温度等因素的影响,随着混凝土表面水分的蒸发, 内部水分逐渐向外部迁移, 继续蒸发水分, 造成混凝土在塑性阶段的 体积收缩。塑性收缩一般可达新浇筑混凝土体积的 1% 左右,大流动 性混凝土有时可达 2% 。在浇筑大面积平板(如楼板层)时,当表面 日晒或风大, 内部水分迁移速度小于上表面水分蒸发的速度时, 混凝 土表面的收缩应力远大于混凝土的抗拉强度, 就会产生大量不规则微 细裂缝,如不及时抹压和覆盖保水养护, 此类裂缝会迅速向内部延伸, 严重时会造成贯通裂缝。2 水化反应收缩裂缝水泥水化反应后, 反应产物的体积与剩余自由水体积之和小于

13、反应前 水泥矿物体积与水体积之和, 形成水化反应收缩。 水泥的四种主要矿 物的反应速度不同, 水化反应的需水量不同, 化学反应收缩量也不同。 如硫化三碳在水化反应生成硅钙比为 1.5 的 CSH 凝时,水化反应的 体积收缩量为 2.5% 。由于水泥熟料中硫化三碳含量为 50%-60% , 专业文档供参考,如有帮助请下载。所以水化反应的浆体收缩量约为 1.3% ,而一般混凝土中浆体含量约 占 1/3 ,故水化反应可导致混凝土体积收缩约为 0.43% ,即浆体多 的大流动性混凝土要多一些。又如 在水泥熟料中占 8%-15%, 所以 水化反应的浆体收缩量为 0.56%-1.05%, 导致混凝土体积收

14、缩为 0.2%-0.35% 。当体系中石膏消耗完毕会有一部分钙矾石转化为单 硫型硫铝酸钙,使已收缩的体积有所增加。至于硫化二碳 它的水化 反应速度仅为硫化三碳的 1/10 左右,对早期影响不大,一二年后, 如水分供应充足,硫化二碳水化反应充分,不但体积不收缩,反而会 有 0.1% 左右的增加。周围形成了薄膜,降低了水化速度。由于体系 中石膏多已为 所消耗,其产物多为单硫型铝酸三钙或铁酸三钙,或 与氢氧化钙反应生成 ,水化反应收缩很少,生成 多时还可能略 有膨胀。总之,水泥水化反应收缩量可达混凝土体积 0.5% 以上,是 个不容忽视的数量。 在混凝土初凝前, 水化反应收缩一部分反应在塑 性收缩中

15、,在混凝土初凝后的水泥水化反应收缩则主要形成混凝土内 部的毛细孔,在养护不及时或养护时间过短时,会产生收缩裂缝。3 表面温差收缩裂缝 大体积混凝土由于水泥水化热导致混凝土内部温度较高, 当混凝土表 面温度与气温相差过大时, 会产生温度收缩裂缝。 混凝土线膨胀系数 约为每摄氏度 0.00001 ,即温度每升高或降低 10 摄氏度,混凝土 会产生 0.01% 的线膨胀或收缩 . 。例如 C30 混凝土的净弹性模量约 为 30000Mpa, 当混凝土的线收缩为 0.01% 时,混凝土的受拉应力 将达 30000*0.01%=3Mpa ,大约相当于 C30 混凝土 28 天的抗 拉强度。在混凝土浇筑初

16、期( 3-5 天),如果混凝土表面温度与环境 温度相差大于 10 摄氏度时,则由于温差收缩产生的拉应力将大于混 凝土的抗拉强度, 既有可能出现温差裂缝。 但由于空气是温度的不良 导体,空气与混凝土表面的热交换不是靠传导而是靠对流, 热交换比 较缓和。经验表明,在无风的外部环境中,混凝土表面温度与气温之 差大于 25 摄氏度时,就会产生肉眼可见的温差裂缝。因此,对于大 体积混凝土或可能发生表面与环境温差较大的混凝土工程, 采用内部 测温的方法,关注混凝土表面温度与环境气温的温差, 当温差太大时, 应采用覆盖保温的方法,以免出现温差裂缝。4 干燥收缩裂缝混凝土硬化后, 内部的游离水会由表及里逐渐蒸

17、发, 导致混凝土由表 及里逐渐产生干燥收缩。 在约束条件下, 收缩变形导致的收缩应力大 于混凝土的抗拉强度时,混凝土就会出现由表及里的干燥收缩裂缝。 混凝土的干燥收缩是从施工阶段撤除养护时开始的, 早期的收缩裂缝 比较细微,往往不为人们所注意。随着时间的推移,混凝土的蒸发量 和干燥收缩量逐渐增大,裂缝也明显起来。混凝土干燥收缩值的大小与混凝土的体积稳定性直接相关, 并受环境 相对湿度的影响。混凝土的诸多成分中, 以粗骨料的体积稳定性最好, 砂子次之。收缩变形主要发生在水泥及掺和料构成的浆体和砂浆上。 因此,在施工和易性允许的情况下, 尽可能加大石子用量, 降低砂率, 降低用水量, 对减少干燥收

18、缩裂缝以及提高混凝土的稳定性、 强度和 耐久性都是有利的。5 自生干缩裂缝 水泥在水化过程中不断消耗水分, 当养护不良或混凝土内部水分不充 分时,混凝土毛细孔中水分消耗过多,导致毛细孔内产生负压,引起 混凝土内部出现自生干缩裂缝 。由于常态混凝土的水胶比较高,混 凝土内有较充裕的水分, 一般不会发生自生干缩裂缝; 而对于水灰比 低于 0.38 的混凝土,内部往往产生大量自生干缩裂缝,导致早期混 凝土体积收缩。在约束条件下,会引起混凝土产生表面裂缝。6 其他失水收缩 混凝土暴露在空气中, 空中的二氧化碳溶进孔隙溶液中成为碳酸, 与 孔隙溶液中的氢氧化钙反应生成碳酸钙和游离水, 这些游离水蒸发导

19、致混凝土体积收缩成为碳化收缩。 又如受碳化或淡水腐蚀等原因致使 混凝土空隙液中 PH 值降低,氢氧化钙量不足时,会有一部分 CSH 凝胶或水化铝酸钙分解,析出氢氧化钙,以补充体系中的碱度,分解 过程中都同时产生游离水, 这些游离水进一步蒸发都会导致混凝土体 积收缩。这些收缩都发生在混凝土硬化后较长时间内, 一般会师干燥 收缩裂缝扩宽或向深处发展。3 施工工艺的影响根据在现场对施工过程的观察, 现场混凝土的检查和对施工人员的访 问,发现以下几个问题:一是混凝土立模和振捣方面存在不足,部分 构件存在蜂窝麻面;二是混凝土的养护,养护不良,对混凝土整体质 量影响十分显著,直接影响混凝土的抗裂能力;三是

20、拆模时间,过早 拆模以及在混凝土构件上过早从事后续工序, 对混凝土强度的发展有 一定影响,并导致裂缝的产生。 下面主要就第二个影响因素:养护进行深入的分析。 通常,人们理解的养护主要是浇水。 其实所谓养护不仅是保持足够的 湿度以满足水化的要求, 而且要在不同的环境温度下保持尽可能小的 内外温差和恰当的升温、 降温速率。 温度控制不当时造成混凝土早开 裂的重要原因之一。 例如某工程混凝土墙在拆模板时正值混凝土内部 温度上升很快的时候,结果 “及时浇水 ”产生“热震”,混凝土表面立刻 发生开裂。图一是混凝土内部典型的温度、 弹性模量和应力发展的曲线。 图中的 约束应力是升温产生的膨胀应力和自收缩产

21、生的拉应力叠加的结果。 在温度达到1以前,混凝土处于塑性状态。故为零赢利,此后温度继 续上升3 - 6小时后,在混凝土内部开始产生压应力;温度达到峰值 后开始下降,到达2时出现第二次零应力。此后即开始产生拉应力; 混凝土出现裂缝时的温度为开裂温度3。 如果在温度到达1以后向混 凝土浇低于环境温度的凉水,就可能产生: “热震”。因此应当在温度 达到1之前尽早冷却混凝土, 阻止温度上升;在第二次零应力2以后, 控制温度速率。 由于自收缩在出凝视就开始产生, 应当尽量保持混凝 土中的水分,控制发生塑性收缩、自收缩、干所的共同作用。拆模时 间应当服从控制混凝土的温度和保存湿度的原则, 要改变过去只考虑

22、 强度发展和拆膜周转的做法。 例如某工程高强混凝土柱因没有周转模 板的需要而延迟到两周后才拆模板, 拆末后才开始浇水, 结果造成混 凝土出现最大宽度0 6mm 的通长裂缝。对于混凝土的自收缩, 水养护和密封养护的效果是相同的, 但肯定会 因没有及时(从初凝开始) 水养护或密封养护而加剧。减小混凝土自 收缩的方法主要靠原材料和配合比来解决, 但是干缩不同。 混凝土浇 筑后应及时(从初凝开始)补充水分。随着水泥水化的进行,混凝土 不断密实并增长抵抗拉应力的能力。 混凝土的干缩是因为环境湿度降 低后硬化浆体失去毛细孔中的水分(环境湿度低于 100% )和凝胶 吸附水(环境湿度低于 65% )而导致的

23、。其中凝胶失去的水分大部 分是不可逆的,也就是说所产生的收缩不可逆。水化程度越高,凝胶 越多,则混凝土的不可逆收缩也越大应水泥如果全部水化, 则所产生 的水泥凝胶不仅使混凝土达不到所需要的强度, 而且还会产生很大的 干缩而严重开裂。 像混凝土中的骨料起稳定体积的作用一样, 水泥石 中需要一定量未水化颗粒或其他惰性物质来稳定体积, 因此湿养护期 才是正确的方法。适宜养护期的长短和混凝土配合比、环境温度、湿 度及风速有关。水灰比越低,越需要及时加强外部补充水的养护,但 养护时间可以短些;水灰比很大时,自由水分多,在相对湿度较大的 潮湿地区,湿养护的影响不大,但养护时间要长才能使其渗透性稳定。 掺用

24、矿物掺和了的混凝土由于水胶比低,在相对湿度不足的情况下, 反应很慢的掺和料如粉煤灰,表面的吸附水很容易蒸发而出现裂缝。 和强度作用一样, 粉煤灰的抗裂作用只有在低水灰比下加强保湿养护 才能发挥出来。 商品混凝土产生裂纹的原因在施工上主要应注意以下几点:一、由于商品混凝土坍落度大,稍加振捣即出现石子下沉、浆体上浮,时常有较多泌水,随着水分蒸发,表面出现大量塑性收缩裂 缝。二、在粗钢筋和粗骨料下面,也会出现泌水层,水分蒸发后形 成孔隙,影响混凝土的密实性和抗渗性能,也降低钢筋的握裹力。三、如泌水失水过多,减小楼板有限断面,将影响结构性能。四、在混凝土拌和物中有多余水量,混凝土硬结后,随着水分 的蒸

25、发,比较容易产生干燥收缩裂缝。五、大流动性混凝土振捣时间不易过长,振捣时间长,在振捣 处会出现富浆部位,富浆部位较容易出现塑性收缩裂缝, 终凝后继续 收缩发展成贯通裂缝。有的工地,为减少拆装泵管次数,将混凝土拌 合物留在原处,导致混凝土不均匀,浆体多的部分出现塑性收缩裂缝 和干缩裂缝。六、在烈日暴晒和大风天气,混凝土浇筑后如不及时覆盖,则 混凝土表面较快凝结,形成一层硬皮,硬皮上的裂缝已经抹压不动。而下部混凝土还未达到处凝。在春季风大时期,由于商品混凝土有缓 凝组分,也会出现类似现象。七、施工单位为赶工期,过早拆侧模,导致蒸发失水过快,出现塑性收缩裂缝;有时混凝土尚未达到规定强度就提前拆底模,严重影响混凝土结构性能。八、施工单位为赶工期,常过早上料,影响混凝土结构性能。九、少数施工人员素质差,认为坍落度越大越好,甚至随意加 水,对及时养护,抹压重视不够,只要出现裂缝,就认为是商品混凝土的问题。专业文档供参考,如有帮助请下载。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1