[高一数学]《数列》专题训练.docx

上传人:scccc 文档编号:12680944 上传时间:2021-12-05 格式:DOCX 页数:21 大小:718.49KB
返回 下载 相关 举报
[高一数学]《数列》专题训练.docx_第1页
第1页 / 共21页
[高一数学]《数列》专题训练.docx_第2页
第2页 / 共21页
[高一数学]《数列》专题训练.docx_第3页
第3页 / 共21页
[高一数学]《数列》专题训练.docx_第4页
第4页 / 共21页
[高一数学]《数列》专题训练.docx_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《[高一数学]《数列》专题训练.docx》由会员分享,可在线阅读,更多相关《[高一数学]《数列》专题训练.docx(21页珍藏版)》请在三一文库上搜索。

1、 数 列 知识要点数列数列的定义数列的有关概念数列的通项数列与函数的关系项项数通项等差数列等差数列的定义等差数列的通项等差数列的性质等差数列的前n项和等比数列等比数列的定义等比数列的通项等比数列的性质等比数列的前n项和等差数列等比数列定义递推公式;通项公式()中项()()前项和重要性质1. 等差、等比数列:等差数列等比数列定义通项公式=+(n-1)d=+(n-k)d=+-d求和公式中项公式A= 推广:2=。推广:性质1若m+n=p+q则 若m+n=p+q,则。2若成A.P(其中)则也为A.P。若成等比数列 (其中),则成等比数列。3 成等差数列。成等比数列。4 , 5看数列是不是等差数列有以下

2、三种方法:2()(为常数).看数列是不是等比数列有以下四种方法:(,)注:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.ii. (ac0)为a、b、c等比数列的充分不必要.iii. 为a、b、c等比数列的必要不充分.iv. 且为a、b、c等比数列的充要.注意:任意两数a、c不一定有等比中项,除非有ac0,则等比中项一定有两个.(为非零常数).正数列成等比的充要条件是数列()成等比数列.数列的前项和与通项的关系:注: (可为零也可不为零为等差数列充要条件(即常数列也是等差数列)若不为0,则是等差数列充分条件).等差前n项和 可以为零也可不为零为等差的充要条件若为零,则是等差数列的充

3、分条件;若不为零,则是等差数列的充分条件. 非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)2. 等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;若等差数列的项数为2,则;若等差数列的项数为,则,且, . 3. 常用公式:1+2+3 +n = 注:熟悉常用通项:9,99,999,; 5,55,555,.4. 等比数列的前项和公式的常见应用题:生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算

4、,则每月的元过个月后便成为元. 因此,第二年年初可存款:=.分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.5. 数列常见的几种形式:(p、q为二阶常数)用特证根方法求解.具体步骤:写出特征方程(对应,x对应),并设二根若可设,若可设;由初始值确定.(P、r为常数)用转化等差,等比数列;逐项选代;消去常数n转化为的形式,再用特征根方法求;(公式法),由确定.转化等差,等比:.选代法:.用特征方程求解:.由选代法推导结果:.6. 几种常见的数列的思想方法:等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法:一是求使,成立的值;二是由利用二次函数

5、的性质求的值.如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n2的任意自然数,验证为同一常数。(2)通项公式法。(3)中项公式法:验证都成立。3. 在等差数列中,有关Sn 的最值问题:(1)当>0,d<0时,满足的项数m使得取最大值. (2)当<0,d>0时,满足的项数m使得取最小值。在解含绝对值的数

6、列最值问题时,注意转化思想的应用。(三)、数列求和的常用方法1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。 2.裂项相消法:适用于其中 是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。3.错位相减法:适用于其中 是等差数列,是各项不为0的等比数列。 4.倒序相加法: 类似于等差数列前n项和公式的推导方法.5.常用结论1): 1+2+3+.+n = 2) 1+3+5+.+(2n-1) = 3) 4) 5) 6) 求数列通项公式的方法一、公式法例1 已知数列满足,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,

7、得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。二、利用例2若和分别表示数列和的前项和,对任意正整数,.求数列的通项公式;解: 2分 当 当4分练习:1. 已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an 解: 10Sn=an2+5an+6, 10a1=a12+5a1+6,解之得a1=2或a1=3 又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15

8、)=0 an+an1>0 , anan1=5 (n2) 当a1=3时,a3=13,a15=73 a1, a3,a15不成等比数列a13;当a1=2时, a3=12, a15=72, 有 a32=a1a15 , a1=2, an=5n3 2(2006年全国卷I)设数列的前项的和,()求首项与通项;()设,证明:解:(I),解得:所以数列是公比为4的等比数列所以:得: (其中n为正整数)(II)所以: 三、累加法例3 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例4 已知数列满足,求数列的通项公式。解

9、:由得则所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例5已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。四、累乘法例6 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。例7已知数列满足,求的通项公式。解:因为所以用式式得则故所以由,则,又知,则,代入得。所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的

10、通项公式。五.构造等差或等比或例8(2006年福建卷)已知数列满足求数列的通项公式;解:是以为首项,2为公比的等比数列。即例9已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以练习.已知数列满足,且。(1)求;(2)求数列的通项公式。解:(1)(2)六、待定系数法例10已知数列满足,求数列的通项公式。解:设将代入式,得,等式两边消去,得,两边除以,得代入式得由及式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例11 已知数列满足,求数列的通项公式。解:设将代入式

11、,得整理得。令,则,代入式得由及式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。例12 已知数列满足,求数列的通项公式。解:设 将代入式,得,则等式两边消去,得,解方程组,则,代入式,得 由及式,得则,故数列为以为首项,以2为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。七、对数变换法例13 已知数列满足,求数列的通项公式。解:因为,所以。在式两边取常用对数得设将式代入式,

12、得,两边消去并整理,得,则,故代入式,得 由及式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。八、迭代法例14已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。九、数学归纳法例15已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1)当时,所以等式成立。(2)假设当时等式成立,即

13、,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。十、换元法例16已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。附: 构造辅助数列 1构造数列,使其为等差数列。 (形式:)例:已知数列满足 ,求证:是等差数列,并求的通向公式。解:

14、,即 是首项为1,公差为3的等差数列。 .2. 构造数列,使其为等比数列。(或) 例:在数列中,已知,求证:数列的通项公式。 解:由可知,对,. ,即.又 . 数列是首项为,公比为的等比数列. . 3. 构造数列,使其为等比数列。 例:已知数列满足,求的通项公式。解:设 ,即则 与 比较后的得 . 或 .当时,是以为首项,2为公比的等比数列。 (). 经验证,n=1时适合上式,. 同理,当时,也得到. 综上知.1、 填空题:(本大题共36分,每小题3分)1、 已知为等差数列,若,则_.2、 已知等差数列中,=_.3、 已知_.4、 等比数列中,_. 5、 数列_.6、 已知无穷等比数列的前n项

15、和 列前n项和为_.(用数值回答)7、 若无穷等比数列的各项和等于,则_.8、 用数学归纳法证明:,当n=1时,代数 式的值为_.9、 在等差数列中,满足,若有 最大值,则n的值为_.10、 已知数列中,_.11、 已知数列中满足:若12、 已知是首相不为0的等差数列,若二、选择题:(本大题共12分,每小题3分)13、已知数列满足( )A、0 B、 C、 D、 第1页 共4页 14、( ) A、 B、 C、 D、以上答案都不对 15、已知等比数列的各项均为正数,公比,设,则P与 Q的大小关系是( ) A、P>Q B、pQ C、p<Q D、PQ16、等比数列中, ( )A、 B、 C

16、、 D、三、解答题:(本大题共5小题,共52分)17、(本大题8分)公差不为零的等差数列的前n项和,若18、(本大题8分)已知数列的首相为1,前n项和为,且满足,数列满足,求数列的通项公式 第2页 共4页19、 (本大题12分)设数列中,若(1) 设数列为“凸数列”,若(2) 在“凸数列”中,求证: ()(3) 设若数列是“凸数列”,求数列前n项和20、 (本大题12分)等比数列的前n项和为,已知对任意,点()均在函数(r为常数)的图像上.(1) 求r的值 (2)记的前n项和(3)若以及第3页 共4页21、 (本大题12分)已知数列中,(1) 求实数的值(2) 求的通项公式(3) 对于数列则M叫做数列 的“上渐进值”。 设

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1