金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx

上传人:scccc 文档编号:12760243 上传时间:2021-12-06 格式:DOCX 页数:13 大小:34.68KB
返回 下载 相关 举报
金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx_第1页
第1页 / 共13页
金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx_第2页
第2页 / 共13页
金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx_第3页
第3页 / 共13页
金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx_第4页
第4页 / 共13页
金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx》由会员分享,可在线阅读,更多相关《金属的结构和性质体心立方堆积中八面体空隙与四面体空隙半径计算.docx(13页珍藏版)》请在三一文库上搜索。

1、08金属的结构和性 质【】半径为 R的圆球堆积成正四面体空隙,试作图计算该四面体的边长和高、中心到顶点距离、中心距 离地面的高度、中心到两顶点连县的夹角以及中心到球面的最短距离。解:4个等径圆球作紧密堆积的情形示于图(a)和(b),图(c)示岀堆积所形成的正四面体空隙。该正四面体的顶点即球心位置,边长为圆球半径的2倍。图1由图和正四面体的立体几何知识可知:AM AE2高EM 2 2AB2BE2-DE336dROAAM1.225R中心到顶点的距离:42OM1 -AM0.408R中心到底边的高度:46边长AB=2R1 . 1 2 2中心到两顶点连线的夹角为:AOB中心到球面的最短距离OA R 0.

2、225R本题的计算结果很重要。由此结果可知,半径为R的等径圆球最密堆积结构中四面体空隙所能容纳的小球的最大半径为。而正是典型的二元离子晶体中正离子的配位多面体为正四面体时正、负离子半径比的下限。此题的结果也是了解 hcp结构中晶胞参数的基础(见习题。 【】半径为R的圆球堆积成正八面体空隙,计算中心到顶点的距离。解:正八面体空隙由 6个等径圆球密堆积而成,其顶点即圆球的球心,其棱长即圆球的直径。空隙的实际体积小于八面体体积。图中三图分别示岀球的堆积情况及所形成的正八面体空隙。图由图(c)知,八面体空隙中心到顶点的距离为:而八面体空隙中心到球面的最短距离为:此即半径为R的等径圆球最密堆积形成的正八

3、面体空隙所能容纳的小球的最大半径。 是典型的二元离子晶体中正离子的配位多面体为正八面体时r/r的下限值。【】半径为R的圆球围成正三角形空隙,计算中心到顶点的距离。解:由图可见,三角形空隙中心到顶点(球心)的距离为:图三角形空隙中心到球面的距离为:此即半径为R的圆球作紧密堆积形成的三角形空隙所能容纳的小球的最大半径,是“三角形离子配位多 面体”中r /r的下限值。【】半径为 R的圆球堆积成 A3结构,计算简单立方晶胞参数a和c的数值解:图示岀A3型结构的一个简单六方晶胞。该晶胞中有两个圆球、4个正四面体空隙和两个正八面体空隙。由图可见,两个正四面体空隙共用一个顶点,正四面体高的两倍即晶胞参数c,

4、而正四面体的棱长即为晶胞参数 a或b。根据题的结果,可得:图【】证明半径为 R的圆球所作的体心立方堆积中,八面体空隙只能容纳半径为 空隙可容纳半径为0.291R的小球。证明:等径圆球体心立方堆积结构的晶胞示于图(0.154R的小球,四面体&)和(b)。由图(16 _ 别分布在晶胞的面心和棱心上。因此,每个晶胞中 6个八面体空隙2可见,八面体空隙中心分112 -4 。而每个晶胞中含 2个圆球,所以每个球平均摊到3个八面体空隙。这些八面体空隙是沿着一个轴被压扁了的变形八面体,长轴为 2a,短轴为a( a是晶胞参数)(?圆球,Oo八面体空隙中心,g四面体空隙中心)图八面体空隙所能容纳的小球的

5、最大半径ro即从空隙中心(沿短轴)到球面的距离,a芈RC3轴方向上互相接触,因而''3该距离为代入2R,得体心立方堆积是一种非最密堆积,圆球只在2二 1 R 0.154R3由图(b)可见,四面体空隙中心分布在立方晶胞的面上,每个面有16 4 胞有12个四面体空隙2 。而每个晶胞有 2个球,所以每个球平均摊到6个四面体空隙。这些a,4条短棱皆为 2。ro4个四面体中心,因此每个晶四面体空隙也是变形的,两条长棱皆为a四面体空隙所能容纳的小球的最大半径斤等于从四面体空隙中心到顶点的距离减去球的半径12R。而、5a4,所以小球的最大半径为从空隙中心到顶点的距离为、554a RR R 0

6、.291R44. 3【】计算等径圆球密置单层中平均每个球所摊到的三角形空隙数目及二维堆积密度。 解:图示岀等径圆球密置单层的一部分。由图可见,6 - 均摊到 3图每个球(如A)周围有6个三角形空隙,而每个三角形空隙由3个球围成,所以每个球平2个三角形空隙。也可按图中画岀的平行四边形单位计算。该单位只包含一个球(截面) 和2个三角形空隙,即每个球摊到2个三角形空隙。设等径圆球的半径为 R,则图中平行四边形单位的边长为2R。所以二维堆积系数为:【】指岀A1型和A3型等径圆球密置单层的方向是什么?解:A1型等径团球密堆积中,密置层的方向与C3轴垂直,即与(111)面平行。A3型等径圆球密堆积中,密置

7、层的方向与六重轴垂直,即与(001)面平行。下面将通过两种密堆积型式划分岀来的晶胞进一步说明密置层的方向。A1型密堆积可划分岀如图(a)所示的立方面心晶胞。在该晶胞中,由虚线连接的圆球所处的平面即密置层面,该层面垂直于立方晶胞的体对角线即C3轴。每一晶胞有4条体对角线,即在4个方向上都有C3轴的对称性。因此,与这4个方向垂直的层面都是密置层。图A3型密堆积可划分岀如图(b)所示的六方晶胞。球A和球B所在的堆积层都是密置层这些层面平行于(001)晶面,即垂直于c轴,而c轴平行于六重轴 C6。【】请按下面(a) (c)总结A1、A2及A3型金属晶体的结构特征。(a)原子密置层的堆积方式、重复周期(

8、A2型除外)、原子的配位数及配位情况。(b)空隙的种类和大小、空隙中心的位置及平均每个原子摊到的空隙数目。(c)原子的堆积系数、所属晶系、晶胞中原子的坐标参数、晶胞参数与原子半径的关系以及空间点阵型式等。解:(a)A1,A2和A3型金属晶体中原子的堆积方式分别为立方最密堆积(ccp)、体心立方密堆积(bcp)相六方最密堆积(hcp)。A1型堆积中密堆积层的重复方式为ABCABCABC,三层为一重复周期,A3型堆积中密堆积层的重复方式为ABABAB-,两层为一重复周期。 Al和A3型堆积中原子的配位数皆为12,而A2型堆积中原子的配位数为8 14,在A1型和A3型堆积中,中心原子与所有配位原子都

9、接触同层6个,上下两层各3个。所不同的是,A1型堆积中,上下两层配位原子沿C3轴的投影相差 60呈C6轴的对称性,而A3型堆积中,上下两层配位原子沿c轴的投影互相重合。在A2型堆积中,8个近距离(与中心原a子相距为 2)配位原子处在立方晶胞的顶点上,6个远距离(与中心原子相距为 a )配位原子处在相邻品胞的体心上。(b)A1型堆积和A3型堆积都有两种空隙,即四面体空隙和八面体空隙。四面体空隙可容纳半径为0.225R的小原子八面体空隙可容纳半径为 0.414R的小原子(R为堆积原子的半径)。在这两种堆积中, 每个原子平均摊到两个四面体空隙和 1个八面体空隙。差别在于,两种堆积中空隙的分布不同。在

10、A1逅R型堆积中,四面体空隙的中心在立方面心晶胞的体对角线上,到晶胞顶点的距离为2 。八面体空隙的中心分别处在晶胞的体心和棱心上。在A3型堆积中,四面体空隙中心的坐标参数分别为cc3_52112172 1 1 2 1 30,0, ;0,0,;,;, ,;,-88 3 3 8 3 3 8。而八面体空隙中心的坐标参数分别为3 3 4 3 3 4。A2型堆积中有变形八面体空隙、变形四面体空隙和三角形空隙(亦可视为变形三方双锥空隙 )。八面体空隙和四面体空隙在空间上是重复利用的。八面体空隙中心在体心立方晶胞的面心和棱心上。每个原子平均摊到 八面体空隙,该空隙可容纳的小原子的最大半径为0.154R。四面

11、体空隙中心处在晶胞的面上。每个原子平均摊到6个四面体空隙,该空隙可容纳的小原子的最大半径为0.291R。三角形空隙实际上是上述两种多面体空隙的连接面,算起来,每个原子摊到12个三角形空隙。(c)金属的结构形式原子的堆积系数所属晶系A1A2A3%立方%立方六方晶胞形式面心立方体心立方六方晶胞中原子的坐标参数晶胞参数与原子半径的关系点阵形式面心立方体心立方简单六方综上所述,A1, A2和A3型结构是金属单质的三种典型结构形式。它们具有共性,也有差异。尽管A2型结构与A1型结构同属立方晶体,但A2型结构是非最密堆积,堆积系数小,且空隙数目多,形状不规则,分布复杂。搞清这些空隙的情况对于实际工作很重要

12、。A1型和A3型结构都是最密堆积结构,它们的配位数、球与空隙的比例以及堆积系数都相同。差别是它们的对称性和周期性不同。A3型结构属六方晶系,可划分岀包含两个原子的六方晶胞。其密置层方向与c轴垂直。而 A1型结构的对称性比 A3型结构的对称性高,它属立方晶系,可划分岀包含4个原子的面心立方晶胞,密置层与晶胞体对角线垂直。A1型结构将原子密置层中 C6轴所包含的C3轴对称性保留了下来。另外,A3型结构可抽象岀简单六方点阵,而A1型结构可抽象岀面心立方点阵。【】画岀等径圆球密置双层图及相应的点阵素单位,指明结构基元。解:等径圆球的密置双层示于图。仔细观察和分子便发现,作周期性重复的最基本的结构单位包

13、括2个圆球,即2个圆球构成一个结构基元。这两个球分布在两个密置层中,如球A和球B。图密置双层本身是个三锥结构,但由它抽取岀来的点阵却为平面点阵。即密置双层仍为二维点阵结构。图中画出平面点阵的素单位,该单位是平面六方单位,其形状与密置单层的点阵素单位一样,每个单位 也只包含1个点阵点,但它代表 2个球。等径圆球密置双层是两个密置层作最密堆积所得到的唯一的一种堆积方式。在密置双层结构中,圆 球之间形成两种空隙,即四面体空隙和八面体空隙。前者由3个相邻的A球和1个B球或3个相邻的B球和1个A球构成。后者则由 3个相邻的A球和3个相邻的B球构成。球数:四面体空隙数:八面体空隙 数=2: 2:1【】金属

14、铜属于 A1型结构,试计算(111)、( 110 )和(100)等面上铜原子的堆积系数。解:参照金属铜的面心立方晶胞,画岀3个晶面上原子的分布情况如下(图中未示岀原子的接触情况):(111)面是密置面,面上的所有原子作紧密排列。该面还是的铜原子的堆积系数等于三角形单位R的球,所以该中球的总最大截面积除以三角形的面积。三角形单位中包含两个半径为 面上原子的堆积系数为:【】金属铂为A1型结构,立方晶胞参数 a 392.3pm,Pt的相对原子质量为,试求金属铂的密度及 原子半径。解:因为金属铂属于 A1型结构,所以每个立方晶胞中有4个原子。因而其密度为:A1型结构中原子在立方晶胞的面对角线方向上互相

15、接触,因此晶胞参数a和原子半径r的关系为a 2、2r,所以:【】 硅的结构和金刚石相同, Si的共价半径为117 pm,求硅的晶胞参数,晶胞体积和晶胞密度。 解:硅的立方晶胞中有 8个硅原子,它们的坐标参数与金刚石立方晶胞中碳原子的坐标参数相同。硅的共价半径和晶胞参数的关系可通过晶胞对角线的长度推导岀来。设硅的共价半径为rsi,晶胞参数为a,则根据硅原子的坐标参数可知,体对角线的长度为8rSi。而体对角线的长度又等于 3a,因而有83' 3a,所以:晶胞体积为:晶体密度为:金刚石、硅和灰锡等单质的结构属立方金刚石型(A4型),这是一种空旷的结构型式,原子的空间占有率只有。【】已知金属钛

16、为六方最密堆积结构,钛原子半径为146pm,试计算理想的六方晶胞参数及晶体密度。解:晶胞参数为:晶体密度为:【】铝为面心立方结构,密度为 270g cm 1,试计算它的晶胞参数和原子半径。用Cu Ka射线摄取衍射图,33衍射线的衍射角是多少?解:铝为面心立方结构,因而一个晶胞中有4个原子。由此可得铝的摩尔质量M晶胞参数a,晶体密3度D及Avogadro常数NA之间的关系为:D 4M /a NA,所以,晶胞参数:面心立方结构中晶胞参数 a与原子半径R的关系为a,因此,铝的原子半径为:根据Bragg方程得:将立方晶系面间距 dhkl,晶胞参数a和衍射指标hkl间的关系代入,得:【】金属纳为体心立方

17、结构,a 429 pm,计算:(a)Na的原子半径;(b)金属钠的理论密度;(d)( 110 )的间距。解:(a)金属钠为体心立方结构,原子在晶胞体对角线方向上互相接触,由此推得原子半径r和晶胞参数a的关系为:代入数据得:(b)每个晶胞中含两个钠原子,因此,金属钠的理论密度为:a429 pmd 110 2 272303.4pm121202V2(c)【】金属钽为体心立方结构,a 330 pm,试求:(a)Ta的原子半径;(b) 金属钽的理论密度(Ta的相对原子质量为 181);(c)( 110 )面的间距(d) 若用 154 pm的X射线,衍射指标为220的衍射角的数值是多少?解:(a)钽原子的

18、半径为:(b)金属钽的理论密度为:(c)( 110)点阵面的间距为:(d)根据Bragg方程得:【】金属镁属A3型结构,镁的原子半径为160 pm。(a)指出镁晶体所属的空间点阵型式及微观特征对称元素;(b)写岀晶胞中原子的分数坐标;(c)若原子符合硬球堆积规律,计算金属美的摩尔体积;(d)求 d002 值。解:(a) 镁晶体的空间点阵型式为简单六方。两个镁原子为一结构基元,或者说一个六方晶胞即为一结构基元。这与铜、钠、钽等金属晶体中一个原子即为一结构基元的情况不同。这要从结构基元和点阵的定义来理解。结构基元是晶体结构中作周期性重复的最基本的单位,它必须满足三个条件,即每个结构基元 的化学组成

19、相同、空间结构相同,若忽略晶体的表面效应,它们的周围环境也相同。若以每个镁原子作 为结构基元抽出一个点,这些点不满足点阵的定义,即不能按连接任意2个镁原子的矢量进行平移而使整个结构复原。镁晶体的微观特征对称元素为63和6。(b)晶胞中原子的分数坐标为:0AO;3,3,2(c)一个晶胞的体积为 abcsin120,而1mol晶体相当于na/2个晶胞,故镁晶体的摩尔体积为:43R NA也可按下述思路计算:1mol镁原子的真实体积为3,而在镁晶体中原子的堆积系数为,故镁晶体的摩尔体积为:d002 二 d001d C(d)2 ,对于A3型结构,d001 C,故镁晶体002衍射面的面间距为:用六方晶系的

20、面间距公式计算,所得结果相同。【】Ni是面心立方金属,晶胞参数a 352.4 pm,用cr Ka辐射(229.1pm )拍粉末图,列岀可能岀现的铺线的衍射指标及其衍射角的数值解:对于点阵型式属于面心立方的晶体,可能岀现的衍射指标的平方和12,16,19,20,24等。但在本题给定的实验条件下:h2 k2l2为 3, 4, 8, 11,2 2 2 2 2 2当h k l 11时,sin 1,这是不允许的。因此, h k l只能为3,4和8,即只能岀现 111,200和220衍射。相应的衍射角为:【】已知金属Ni为A1型结构,原子间接触距离为2492 pm,试计算:(a) Ni的密度及Ni的立方晶

21、胞参数;(b) 画岀(100 )、( 110)、( 111 )面上原子的排布方式。 解:(a) 由于金属Ni为A1型结构,因而原子在立方晶胞的面对角线方向上互相接触。由此可求得晶胞 参数:晶胞中有4个Ni原子,因而晶体密度为:(b)3【】金属锂晶体属立方晶系,(100)点阵面的面间距为350 pm,晶体密度为°.53g cm ,从晶胞中包含的原子数目判断该晶体属何种点阵型式? (Li的相对原子质量为)解:金属锂的立方晶胞参数为: 设每个晶胞中锂原子数为 Z,则:立方晶系晶体的点阵形式有简单立方、体心立方和面心立方三种,而对立方晶系的金属晶体,可能的点阵形式只有面心立方和体心立方两种。

22、若为前者,则一个晶胞中应至少有4个原子。由此可知,金属锂晶体属于体心立方点阵。【】 灰锡为金刚石型结构,晶胞中包含8个Sn原子,晶胞参数 a 648.9nm(a) 写岀晶胞中8个Sn原子的分数坐标;(b) 算岀Sn的原子半径;(c) 灰锡的密度为5.75 g cm 求Sn饿相对原子质量;(d) 白锡属四方晶系,a 583.2pm,c 318.1pm,晶胞中含有4个Sn原子,通过计算说明由 白锡转变为灰锡,体积是膨胀了,还是收缩了?(e) 白锡中Sn Sn间最短距离为302.2pm,试对比灰锡数据,估计哪一种锡的配位数高? 解:(a) 晶胞中8个锡原子的分数坐标分别为:(b) 灰锡的原子半径为:

23、D灰(c) 设锡的摩尔质量为 M,灰锡的密度为 Sn灰,晶胞中原子数为 Z,则: 即锡的相对原子质量为。(d) 由题意,白锡的密度为:可见,由白锡转变为灰锡,密度减小,即体积膨胀了。(e) 灰锡中 SnSn 间最短距离为:小于白锡中 SnSn 间最短距离,由此可推断,白锡中原子的配位数高。【】 有一黄铜合金含 Cu 75%, Zn 25%(质量) ,晶体的密度为 8.5g cm 。晶体属立方面心点阵结构,晶胞中含4个原子。Cu的相对原子质量, Zn。(a)求算 Cu 和 Zn 所占的原子百分数;(b)每个晶胞中含合金的质量是多少克?(c)晶胞体积多大?(d)统计原子的原子半径多大?解:(a)设

24、合金中铜的原子分数(即摩尔分数)为 x ,则锌的原子分数(即摩尔分数)为 1 x ,由题意 知,解之得: x 0.755,1 x 0.245所以,该黄铜合金中, Cu和Zn的摩尔分数分别为%(b)每个晶胞中含合金的质量为:(c)晶胞的体积等于晶胞中所含合金的质量除以合金的密度,即:(d)由晶胞的体积可求出晶胞参数: 由于该合金属立方面心点阵结构,因而统计原子在晶胞面对角线方向上相互接触,由此可推得统计原子 半径为:【】Au Cu无序结构属立方晶系,晶胞参数a 358pm如图9.3.1 c 。若合金结构有(a)变为(c) 时,晶胞大小看作不变,请回答;( a) 无序结构的点阵型式和结构单元;(

25、b) 有序结构的点阵型式、结构单元、和原子分数坐标;(c)用波长154 pm的X射线拍粉末图,计算上述两种结构可能在粉末图中岀现的衍射线的最小衍射角 的数值。解:(a)无序结构的点阵型式为面心立方,结构基元为Cu1 Aux ,即一个统计原子。(b)有序结构的点阵型式为简单四方,结构基元为CuAu,上述所示的立方晶胞图(b)可进一步划分成两个简单四方晶胞,相当于两个结构基元。取 图( b) 中面对角线的 1/2 为新的简单四方 晶胞的a轴和b轴,而c轴按图(b)不变,在新的简单四方晶胞中原子分数坐标为:( c)无序结构的点阵型式为面心立方,它的最小衍射角指标应为111,因此最小衍射角为:有序结构

26、属四方晶系,其面间距公式为:根据 Bragg 方程,最小衍射角对应于最大衍射面间距,即对应于最小衍射指标平方和。最小衍射指标平方和为 1。因此。符合条件的衍射可能为100, 010和 001。但有序结构的点阵型式为简单四方, c a,因此符合条件的衍射只有 001。最小衍射角 001 可按下式计算:【】 Fe和 Fe分别属于体心立方堆积(bcp)和面心立方堆积(ccp )两种晶型。前者的原子半 径为124.0pm,后者的原子半径为127.94pm/( a) 对 Fe: 下列“衍射指标”中哪些不岀现?110, 200 , 210, 211 , 220, 221 , 310, 222 , 321,

27、 521 。 计算最小 Bragg 角对应的衍射面间距; 写岀使晶胞中两种位置的 Fe原子重合的对称元素的名称、记号和方位。(b) 对 Fe : 指岀密置层的方向; 拖把该密置层中所形成的三角形空隙看作具体的结构,支持该结构的结构单元; 计算二维堆积密; 请计算两种铁的密度之比。解:(1)( a)体心的衍射指标要求指标之和为偶数,即h k I偶数。所以210, 221两个衍射不可能出现。(b)最小角度的衍射指标为110。半径为r的原子进行体心密堆积,a 4rr .3。1 1 10,0,0;二 -,(c)晶胞中两种位置上 Fe原子的坐标为2 2 2(I)和c轴平行,x,y坐标为1/4,1/4的2

28、1轴(n)和 001面平行,z坐标为1/4的n滑移面。 均可使晶胞中的两个 Fe原子重合。(2)( a)密置层和(1 1 1 )面平行。1个Fe原子。晶胞中含三角形空隙2个,即结(b) 密置层的结构基元为 1个Fe原子,即其素晶胞包含 构基元为1个Fe原子和2个三角形空隙。(c) 密置层的二维堆积密度为:原子所占面积/六方素晶胞的面积2 2r2/ 2r sin600.906(d) 若面心立方堆积以下标 F表示,体心堆积以下标 I表示,则:【】某金属晶体属于hcp结构,原子半径为160.0 pm :(a) 计算 d°03 ;(b) 画出该警惕的晶胞沿特征对称元素的投影图,在图上标出特征

29、对称元素的位置并给出名称(亦 可用符号表示);(c) 画岀该晶体的多面体空隙中心沿特征对称元素的投影图(可分别用O和T表示八面体和四面体),画岀由 O和T构成的二维点阵结构的点阵素单位,指岀结构单元。114厂14厂d003-c-U6r- V6160.0 pm 174.2 pm解:(a)3333 3(b) 该晶体属六方晶系,特征对称元素为六重对称轴,包括6和63轴。六方晶胞沿六重轴的投影图及特征对称元素的位置分别示于图(&)和(b)o原子旁标明的 0,2等数字表示它在 c轴(或z轴)上的分数坐标位置。(c) hcp晶体结构中存在四面体空隙(以黑球表示其中心位置)和八面体空隙(以白球表示其中心位置)如图所示。图中多面体空隙的位置是相对图(a)所示的结构,标明的数字是c轴的分数坐标,结构基元是4个四面体空隙和 2个八面体空隙。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1