基础工业工程课程设计报告书.docx

上传人:doc321 文档编号:12882099 上传时间:2021-12-06 格式:DOCX 页数:11 大小:257.35KB
返回 下载 相关 举报
基础工业工程课程设计报告书.docx_第1页
第1页 / 共11页
基础工业工程课程设计报告书.docx_第2页
第2页 / 共11页
基础工业工程课程设计报告书.docx_第3页
第3页 / 共11页
基础工业工程课程设计报告书.docx_第4页
第4页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《基础工业工程课程设计报告书.docx》由会员分享,可在线阅读,更多相关《基础工业工程课程设计报告书.docx(11页珍藏版)》请在三一文库上搜索。

1、下载可编辑基础工业工程课程设计学院:机械工程学院专业:工业工程班级: 114120301学号:姓名:指导教师:提交时间:一、装配线概况本课程设计研究的是一级蜗轮蜗杆减速器的装配过程。在这条装配线上, 计划月.专业 .整理 .下载可编辑产量为 4800 件,每月工作 28 天,每天工作 8 小时。一级蜗轮蜗杆减速器的装配结构图如图 1 所示, BOM(Bill of Materials)表如表 1 所示。图 1 减速器装配结构图表 1 减速器 BOM表产品名称一级蜗轮蜗杆减速器设计日期20108层次零件编号零件名称数量/ 产品自制或外购001000蜗轮蜗杆减速器1自制100110箱盖1外购100

2、120箱座1外购100130轴1外购100140端盖(右、后)2外购100150端盖(左)1外购200210垫圈3外购200220注油塞1外购200230大螺栓4外购200240小螺栓12外购据了解,该生产线一直以手工劳动为主。 因此,通过合理分配生产作业要素使得各操作工人的生产负荷尽量均衡, 减少工人忙闲不均现象, 使之按生产节拍运转和高效率生产,是极具现实意义的。一级蜗轮蜗杆减速器的装配主要包括右端盖的安装、左端盖的安装、 轴的安装、箱盖的安装、后箱盖的安装、注油塞安装等工序组成。在该装配线上共有6个工位,实际生产流程及各工位操作内容如图2 所示.专业 .整理 .下载可编辑图 2 减速器装

3、配流程二、生产线现状及问题1、生产线的作业测定作业时间是核算生产线平衡率的基础数据, 也是找出瓶颈工位的依据。 本研究采用秒表测时方法对生产线 6 个在线工位进行测定,结果如图 3 所示。图 3 各工位的标准时间从以上搜集到的时间数据可以看出,除工位1、工位 2 和工位 3 基本符合生产节拍以外,其余各工位均远小于生产节拍,其中,工位4、工位 5 和工位 6 的标准时间分别为53s、56s、30s 远小于其他各个工位, 能力过剩,造成资源浪费,操作工人一直十分空闲, 多数时间处于等待状态。 如果能将过剩的生产能力有效利用起来 , 生产效率必定会有大幅度提高。2、生产线平衡分析生产不平衡最大时间

4、损失:.专业 .整理 .下载可编辑任务时间总和(T)平衡率 P100% 实际工位数目( m) 节拍( CT)生产不平衡损失率 =1- 平衡率 =1-61.52%=38.48%由以上计算可知, 在生产过程中 , 有 38.48%的时间由于产线配置不平衡而损失了。生产线生产不平衡最大时间损失为106s,不平衡最大时间损失非常大, 该生产线存在很大的改进空间。1.3 生产线的第一次优化分析1、作业分解与重排由于该生产线各工位时间差相当大,各操作工人的生产负荷不均, 我们希望对各工位的生产作业进行重新分配,以优化生产线平衡现状。 首先,我们对各工位进行作业分解,如表2 所示:表 2各工位作业分解工位基

5、本作业作业说明完成时间( s)1A安装垫圈和右端盖10B106拧紧相应的三颗小螺栓962C安装垫圈和左端盖21D136扭紧左端盖对应的三颗小螺栓1153E安装轴15F121扭紧前端盖对应的两颗小螺栓1064G安装箱盖453H扭紧箱盖对应的四颗大螺栓495I安装垫圈和后端盖3J56扭紧后端盖对应的三颗小螺栓536K扭紧前端盖所剩的一颗小螺栓22L30扭紧注油塞8合计502结合产品特征及各基本作业的实际装配顺序,作出工作网络图,如图4 所示。.专业 .整理 .下载可编辑图 4 工作网络图2、工位分析通过对各工位进行作业分解, 结合工作网络图, 我们对部分工位进行了重点分析:工位 4、5、 6 操作

6、分析工位 4、5、6 所用时间相对很短,能力过剩。工人的任务量相对其他工序小很多。工序总用时中等待时间过长, 即这 3 个工位的操作工人大部分时间是在等待。通过以上分析, 结合生产的实际情况, 运用动作经济原则和整个生产线工作量平衡理论,利用 ECRS原则,充分利用现有资源提高生产能力, 将工位 4、工位 5、工位 6 的作业合并为新的工位 4 的基本作业,从而形成新的工位作业分配表, 如表3所示。表 3 改善后的作业分配工位基本作业作业说明完成时间( s)1A安装垫圈和右端盖10106B拧紧相应的三颗小螺栓962C安装垫圈和左端盖21136D扭紧左端盖对应的三颗小螺栓1153E安装轴1512

7、1F扭紧前端盖对应的两颗小螺栓1064G安装箱盖4H扭紧箱盖对应的四颗大螺栓49I安装垫圈和后端盖3139J扭紧后端盖对应的三颗小螺栓53K扭紧前端盖所剩的一颗小螺栓22.专业 .整理 .下载可编辑L扭紧注油塞8合计5023、第一次优化效果经过对各工位作业进行合理的调整, 整个生产线的生产率已经得到明显的提高,具体表现在: 生产成本方面将生产能力明显过剩的原工位 4、5、6 合并在一起,从而,取消了原工位 5 和原工位 6,减少两个工位,从而减少两名工人,节约了人工成本。 时间研究方面对改善后的各工位再次进行秒表时间研究,测得各工位的标准时间如图 5 所示。图 5 改善后的工位负载由上图我们发

8、现, 经过改善后各工位操作时间渐趋平衡, 大部分工位操作时间相差不大。工位 4 的操作时间相对较长,有待进行进一步优化。生产线平衡方面生产不平衡最大时间损失:TMax-T M1in=139-106=33(s)任务时间总和(T)平衡率 P100% 实际工位数目( m) 节拍( CT).专业 .整理 .下载可编辑生产不平衡损失率 =1- 平衡率 =1-90.29%=9.71%由以上计算可知,经过第一次优化,生产线不平衡最大时间损失由106s 降低到33s,生产线平衡率由 61.52%提高到 90.29%,生产节拍由 136s 略增到 139s,但减少了两个工位, 节省了人工成本。 可见第一次优化效

9、果相当明显, 但是生产不平衡最大时间损失仍然较大,依然有进一步优化的空间。四、第二次优化经过第一次优化, 整条生产线的生产效率得到了显著的提高, 但是部分工位工位 4 的操作时间较其他工位明显较长, 制约了该生产线生产率的提高, 成为了新的瓶颈环节。因此,我们采用 MOD排时法对工位 4 进行动作时间分析。1、操作分析我们利用工位 4 的影像资料进行分析, 发现在扭紧后端盖对应的3 颗小螺栓的操作时,操作者一直保持一只手操作,另一只手持住箱底的操作状态(如图 6 所示),明显不符合动作经济原则的双手动作原则,在操作时间上存在较大的改善空间。因而我们运用 MOD排时法对扭紧小螺母的操作进行动作因

10、素分析,如表4 所示。图 6 扭紧小螺母操作表 4 工位 4 的动作因素分析作业内容:拧紧3 个小螺栓工工位序号: 4作.专业 .整理 .下载可编辑定员:1地操作者:布MOD数: 213时间 :27.477s置日期:图左手动作时右手动作间动作叙述分析式次数MOD 次数分析式动作叙述值伸手到箱M3G13123M3G1伸手取小螺座栓持住H393M3P0拿到身前持住H3213M2P5插到端盖留孔位持住H363M1P0M1G0旋转螺栓持住H3483(M1P0M1G0)*8继续旋转 8次螺栓持住H3123M3G1伸手取扳手持住H393M3P0拿到身前持住H3213M2P5契合螺栓尾部持住H3153M2G

11、1M2P0旋转螺栓持住H3603(M2G1M2P0)*4旋转 4 次,拧紧螺栓合计213由表 4 不难看出,在整个螺栓的操作中, 时间浪费相当严重。 左手一直保持持住箱座等待的状态,右手一直在重复取物和安装动作。 解决双手分工极不均衡,节奏性差的问题是降低整个工位操作时间的关键。2、第二次优化方案我们采用“ 5W1H”提问方法发现,之所以左手要一直保持持住箱座的状态,.专业 .整理 .下载可编辑是由于箱座没有固定, 必须要左手进行人工固定, 便于右手在箱座上进行安装操作。所以我们选用一个支架, 来代替左手固定箱座, 从而使左手解脱出来帮助右手进行组装操作,改善后的动作因素分析见表 5。表 5

12、改善后的动作因素分析作业内容:拧紧3 个小螺栓工工位序号: 4作定员: 1地操作者:布MOD数: 174时间: 24.768s置日期:图左手动作时间右手动作动作叙述分析式次MOD值次数分析式动作叙述数伸手去取箱M3G11123M3G1伸手取小螺座栓放到支架上M3P0193M3P0拿到身前伸手去取扳M3G11213M2P5插到端盖留手孔位把扳手放在M2P0163M1P0M1G0旋转螺栓身前用扳手契合M2P53213BD等待螺栓尾部旋转螺栓M2G1M2P03153BD等待旋转 6 次,扭(M2G1M2P0)*63903BD等待紧螺栓合计174改善后, MOD值由 213 减少为 174,操作时间由

13、27.477s 降低到 22.446s, 减少了 5.031 s。双手同时进行相同的操作,协调性强,操作效率高。工位4 的整体操作时间也从139s 减少为 133.969s, 不再是瓶颈环节,任务时间总和由502s.专业 .整理 .下载可编辑变为 496.969s 。生产不平衡最大时间损失:T=TMax-T Min=136-106=30任务时间总和(T)平衡率 P100% 实际工位数目( m) 节拍( CT)生产不平衡损失率 =1- 平衡率 =1-91.35%=8.65%经过第二次优化,生产线不平衡最大时间损失由33s 降低到 30s,生产线平衡率由 90.29%提高到 91.35%,生产节拍

14、由 139s 降低到 136s。与第一次优化相比,生产效率再次得到提高, 生产不平衡状况得到极大改善, 日产量也相对提高。五、优化效果对比运用秒表时间研究法以及MOD排时法,先后对原生产线进行了两次优化,两次优化效果对比如表6 所示。表 6 改善前后工艺评价比教为了更清晰得展现改善效果,我们做出了各工艺评价指标的柱状图,如图 8 所示。.专业 .整理 .下载可编辑图 8 改善效果柱状图由以上图表我们可以清晰的看见, 进过两次改善之后, 原生产线的不平衡最大时间损失由 106s 减少到 30s,生产平衡率由61.52%提高到 91.35%,增长了29.83%,日产量得到显著提高。 同时依据动作经济原则对操作人员的操作进行了合理的改善, 使操作方法更加科学合理,各工位任务分配合理, 工人的疲劳程度降低,工段生产能力平衡。六、结论通过对实际生产线工艺进行评价及优化, 说明运用作业测定技术能够充分利用现有资源有效地提高生产线的生产能力, 减少无效时间, 节约人工成本。 这一实例也给企业提供了解决同类问题的方法和措施。 .专业 .整理 .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1