斜齿圆柱齿轮接触线长度计算.docx

上传人:scccc 文档编号:12980592 上传时间:2021-12-09 格式:DOCX 页数:34 大小:356.92KB
返回 下载 相关 举报
斜齿圆柱齿轮接触线长度计算.docx_第1页
第1页 / 共34页
斜齿圆柱齿轮接触线长度计算.docx_第2页
第2页 / 共34页
斜齿圆柱齿轮接触线长度计算.docx_第3页
第3页 / 共34页
斜齿圆柱齿轮接触线长度计算.docx_第4页
第4页 / 共34页
斜齿圆柱齿轮接触线长度计算.docx_第5页
第5页 / 共34页
点击查看更多>>
资源描述

《斜齿圆柱齿轮接触线长度计算.docx》由会员分享,可在线阅读,更多相关《斜齿圆柱齿轮接触线长度计算.docx(34页珍藏版)》请在三一文库上搜索。

1、摘要齿轮是机械产品的重要零件,齿轮传动是传递机械动力和运动的一种主要形 式。它与皮带、摩擦、液压等机械传动相比较,具有功率范围大、传动效率高、 传动比准确、使用寿命长、安全可靠等特点。因此,它已成为许多机械产品中不 可缺少的传动部件。齿轮设计与制造的水平直接影响到产品的性能和品质。由于它在工业发展中的突出位,齿轮的质量和可靠性已成为机械工业化的一种象征。齿轮传动在航空产品上也得到了广泛的应用, 是航空产品,尤其是航空发动机的 重要传动件,其性能的优劣在一定程度上决定着整个产品的质量水平。 齿轮是机 械传动中常用的零件之一,尤其渐开线齿轮应用广泛。本文给出了渐开线根切变位圆柱斜齿轮的端面重合度计

2、算公式,推出它的接触线长度的精确计算公式,并首次采用动态统计规律下接触线平均长度作为计算 的平均值,使齿轮传动的设计和校核更加精确合理。利用MATLA歌件,绘制出了接触线长度变化率随端面重合度、纵向重合度 的二维和三维图,并分析出重合度的最佳和最差组合条件。 同时,给出了接触线 长度计算的程序化和参数的动态调整,从而为齿轮的传动设计提供了理论依据和 简捷算法。关键词:斜齿圆柱齿轮 接触线MATLABAbstractGear is an important part of mechanical products, mechanical power transmission gear transm

3、ission is a major form and movement.It is with the belt, friction, hydraulic mechanical transmission, compared with a power range, high transmission efficiency, transmission ratio accuracy, long life, safe and reliable.so,It has become indispensable in many machinery drive components.The level of ge

4、ar design and manufacture a direct impact on product performance and quality.Because of its prominent position in industrial development, quality and reliability of the gear has become a symbol of industrial machinery.Gear products in the air has also been widely used in aviation products, especiall

5、y the importance of aero-engine transmission parts, its performance advantages and disadvantages to some extent determines the quality of the product.Commonly used in mechanical transmission gear is one of the parts, in particular, are widely used involute gear.In this paper, undercut involute helic

6、al deflection face contact ratio gear formula,Launched its exact length of the contact line of the formula,Statistical law for the first time under the dynamic contact line as the calculation of the average length of the average, the gear drive design and verification more accurate and reasonable.Us

7、ing MATLAB software, to map out the rate of change of contact length with the face contact ratio, degree of vertical two-dimensional and three-dimensional coincidence map, and analyze the degree of coincidence of the best and worst combination of conditions.At the same time, given the length of cont

8、act line calculation procedures and parameters of the dynamic adjustment of the gear drive so as to provide a theoretical basis and design of simple algorithms.Key Words: Helical Gears Contact line MATLAB目录摘要 1Abstract 2第一章引言 41.1国内外研究现状 41.2课题的基础了解 71.3本文主要研究内容 7第二章斜齿圆柱齿轮接触线长度计算理论及公式推导 82.1引言 82.2变

9、位根切齿轮重合度及接触线长度的计算 92.2.1渐开线斜齿变位根切齿轮重合度的计算 92.2.2 渐开线斜齿圆柱齿轮接触线长度的精确计算 102.3根切齿轮接触线长度随&仪、邛的动态变化规律分析 122.3.1 动态统计规律下的平均长度 132.3.2 接触线长度变化与重合度 七 邛的组合分析 152.4本章小结 15第三章基丁 MATLAB触线长度的参数化调整 163.1引言 163.2MATLA的介 163.3 基丁 MATLAB接触线长度参数化调整实例 183.4 本章小结 18第四章结语 19附录程序活单 20参考文献 28致谢 31第一章引言1.1国内外研究现状齿轮是机械产品

10、的重要零件,齿轮传动是传递机械动力和运动的一种主要 形式。它与皮带、摩擦、液压等机械传动相比较,具有功率范围大、传动效率高、 传动比准确、使用寿命长、安全可靠等特点。因此,它已成为许多机械产品中不 可缺少的传动部件。齿轮设计与制造的水平直接影响到产品的性能和品质。由于它在工业发展中的突出位,齿轮的质量和可靠性已成为机械工业化的一种象征。齿轮传动在航空产品上也得到了广泛的应用, 是航空产品,尤其是航空发动机的 重要传动件,其性能的优劣在一定程度上决定着整个产品的质量水平。 齿轮是机 械传动中常用的零件之一,尤其渐开线齿轮应用广泛。渐开线齿形可以保证齿轮传动比为常数,且在承载能力,加工难易度方面比

11、 摆线或其他齿形有优越性。渐开线齿轮比较容易制造,且传动平稳,传递速度稳 定,传动比准确,渐开线圆柱齿轮是机械传动量大而广的基础零部件,广泛在汽车、拖拉机、机床、电力、冶金、矿山、工程、起重运输、船舶、机车、农机、 轻工、建工、建材和军工等领域中应用。因此现代使用的齿轮中,渐开线齿轮占 绝多数,而摆线齿轮和圆弧齿轮应用较小。传统的设计方法是依据经验用类比法, 结合查表及大量繁杂的公式计算,这 样的方法一是工作量大,二是不可能对各参数进行优化及筛选,彳艮难保证齿轮精 度设计的合理性。因此,借用了辅助软件对齿轮的几何参数进行计算后, 对齿轮 精度的设计及其相关的数据进行计算机处理, 使齿轮的精度设

12、计达到快速、准确、 合理,齿轮设计起来就没那么费时和吃力了。两齿轮齿廓曲面的瞬时接触线称为齿面接触线。当一对斜齿圆柱齿轮啮合传 动时,两轮的齿面接触线是一条斜线。 在主动轮的齿廓曲面上,该接触线是由齿 根逐渐走向齿顶,而在从动轮的齿廓曲面上,该接触线是由齿顶逐渐走向齿根。 接触线和法向啮合齿形同为渐开线螺旋面上的两条特性线。接触线误差是在齿轮精度标准JB179-81中被取消,而在JB179-83中重新增加的一项精度指标。接触 线误差也就是在基圆圆柱的切平面,平行于公称接触线并包容实际接触线的两条直线间的法向距离。接触线误差直接影响相啮合齿面在啮合平面中的间隙, 因而 直接影响齿面接触斑点的尺寸

13、,其全面反映了齿形误差和齿向误差, 是评定斜齿 轮载荷分布均匀性的一项主要指标。斜齿圆柱齿轮的重合度系数只考虑重合度对齿轮接触应力的影响系数,他与接触线总长度的大小密切相关。渐开线齿轮在端面重合度洗和纵向重合度耶的影响下,同时有几对轮齿参加啮合,所以造成总的承载齿宽B将大丁齿轮的齿宽 b。由丁轮齿的接触线方向与齿宽方向的火角为基圆螺旋角凡,所以,总的接触线长度L可表示为L=错误!未找到引用源。,实际上,在不同的啮合位置上,B 是不断变化的,即总的接触线长度 L变化的,这就引起接触线上载荷的变化。图1为斜齿轮的啮合平面。原为基圆螺旋角:诚、祁分别为端面、纵向重合 度;Pb t 、Pb a分别为端

14、面、纵向基圆齿距;A E为啮合带宽;b为齿宽。图 中2种斜线代表了 2个啮合时刻的接触线。类似丁图1 ,画出在各种 融、驴组 合下以及各个不同啮合时刻的大量的接触线图,即可总结接触线长度的变化规律 及计算公式。其平均长度L、最小长度L min ,最大长度L max的改进公式如下。式中 以垛牌:院别为处和非值小数点后面的尾数部分值。L L =03 馈妙附P%吟险1)Pba/cosEbL - : 一Pba / cos b - :b / cos 'b当土瞩肖1时Lmk =(;二("打:n)Pba'/coHcos : b当押'奸1时L'''&q

15、uot;战祖辟 b当喧f时LXxV-FZ 'rPbaVPo/Cos'b、.'",时L rL = &(衫凯条略日WPb)P3如ps& b(1)(3)(4)(5)对直齿轮(1 皿 2时)有L min = bL max = 2 b(8)令Na =L max/ L , Nb = L min / L , Na、Nb分别代表最大、最小接触线长度的相对大小。在3种不同 知时的N a、Nt2线图如图2所示。Na线位丁纵坐标等 丁 1的横线以上部分,Nb线位丁以下部分。根据分析,在啮合面内接触线总长度随 皿、罪 的变化规律以及啮合过程中的动 态变化规律为:(1)

16、 当跄或为整数时,接触线长度永为定值,在皿一定时,当时n a有极大值;当 邢=眇 时Nb有极小值。所以斜齿轮的齿宽选择应尽可能使 郡接近整数,或使邓 值适当取大些。(2) 仅用图2来反映接触线长度极值的静态大 小是不够的。因为极值大小不同时其持续的时 间也是不的。分析表明:当L max偏离L的程度大丁 L mim偏离L的程度时,则L max持续时间小丁 L mim持续时间,甚至为瞬时值;反之,当Lmin->Lma口时,则l mim持续时间小L min _L > L max _L时,则L max与L min持续虬、耳曲线丁 L max持续时间,甚至为瞬时值;当时间相等。即L是严格的动

17、态统计平均值。根据以上规律,我们认为:第一,对斜齿轮在分析例如重合度系数时,只应从 统计平均值L出发,而不应从最小值L min出发。因为L min值不能反映其动态 的持续时间。例如在图2中Na、Nb曲线的高峰或低谷值,实际上都是瞬时值(参 见图1)。从图2也可知:当罪为整数时,L min等丁平均值L ;当丁'。-广口时,L min为瞬时低谷值。显然采用L min作出发点不能等价代表这两种情况时齿轮 的相对强度。另外从疲劳强度来说,只考虑L min的不利影响而不考虑L max的 有利影响也是不合理的。第二,同样的道理,在用三维有限元进行斜齿轮的应力 变形等分析时,也应当只取啮合面内接触线

18、长均等丁平均值时的若干个啮合时刻 (受力状态)来进行计算,并综合其统计规律。本论文推导斜齿轮接触线长度的计算公式,并总结了接触线长度随处、罪的 变化规律以及啮合过程中的动态统计规律。并给出了 Na =邪 线图。认为接触强 度重合度系数公式及有限元计算等均应从动态统计平均接触线长度出发。 通过以 上途径实现斜齿圆柱齿轮的接触线参数化调整。1.2课题的基础了解1.3本文主要研究内容全文共四章,各章主要内容如下:第一章,引言。本章叙述了斜齿圆柱齿轮接触线长度计算的国内外研究现状, 并结合课题的研究背景及来源,简述了本文的研究内容。第二章,接触线长度计算理论及公式推导。本章首先讨论了接触线长度计算 的

19、原理,其次对斜齿轮重合度及接触线长度进行了理论计算, 并对接触线长度随 皿、耶的动态变化规律进行了分析。第三章,基丁 MATLAB斜齿圆柱齿轮接触线长度参数化调整,本章简述了 MATLAB的计算绘图功能及参数化调整实例。第四章,结语,总结全文第二章斜齿圆柱齿轮接触线长度计算理论及公式推导2.1引言渐开线斜齿轮的啮合过程是在前端面从动轮的齿顶一点开始接触,然后接触线由短变长,再由长变短,最后在后端面从动轮齿根部某一点分离。因此,轮齿 上所受载荷是逐渐加上和逐渐卸除的。所以重合度较大,传动比较平稳,冲击、 振动和噪声较小,在高速、重载传动中获得了广泛应用。对于渐开线斜齿轮,其应力计算中,单位接触线

20、长度上的法向力 Wn的变动, 会增加轮齿在啮合过程中的应力脉动, 从而增加轮齿在运转中的振动和噪声。 而 在实际设计中,因为重合度的选取问题,接触线总长 L往往是变化的,这就引起 接触线上载荷的变化。因此,计算斜齿变位齿轮接触线长度并实现其参数化调整, 对提高齿轮传动的平衡性、承载能力、计算精度以及减振降噪、减少计算量具有 重要意义。随着齿轮传动设计要求的提高,对其计算精度提出了越来越高的要求, 尤其 是当齿轮进行变位后,变位系数的改变会影响一些参数的改变, 进而影响后续的设计精度。本文首先精确推导了渐开线斜齿变位齿轮传动啮合时重合度以及接触 线长度的计算公式,并以此为基础利用 MATLA求现

21、了根切变位齿轮的参数化调 整。2.2变位根切齿轮重合度及接触线长度的计算2.2.1渐开线斜齿变位根切齿轮重合度的计算对丁变位根切齿轮,因为有变位系数的存在,它的端面重合度的计算应按变 位后的公式(2.1)来计算。其变位系数与齿轮各系数、尺寸之间的关系式如下:1''.;.= z(tan : at1tan : t) z2(tan : at2 - tan : t)(2.1)2 二tan : n其甲: = arctanf , 闩 =arctan(tan A cosot)cos :'2(为X2),.Z1Z2z2 cos% /-1pos%/inv -1 =tan -1 inv -

22、ta -az1% =二m 2:yt =Xt1 知 - yt"at =arccos db1 , ”at2 =arccos 也daUda2 ;db1 = mt z cosdb2 = mt z2 cos d.,- J. 、da1 =(z12hat2xm -2 M)mt*da2 =(z22hat2xt 2 7t )mt式中 m齿轮的模数,mmzi、z2分别是相啮合两齿轮的齿数;a 齿轮的分度圆压力角,rad ;*一 一一 、.< 、ha具顶局系数;X1、X2分别是相啮合两齿轮的变位系数;yt中心距变动系数;Ayt凶曲变动系数;ttatl、Otat2端面齿顶圆压力角,rad ;a'

23、;齿轮传动啮合角,rad ;dbi、db2分别是相啮合两齿轮的基圆直径,mmdai、da2分别是相啮合两齿轮的齿顶圆直径,mm电一一端面重合度系数。由图2.1可以看出,正变位齿轮重合度大丁负变位齿轮的重合度,且随着齿 轮变位系数的增大,重合度也在增大。因此,在选取的变位系数不产生根切的前 提下,适当增大小齿轮的正变位,可以减小机构尺寸,提高齿面的接触强度和弯 曲强度,修复旧齿轮,并在改善齿根磨损方面更加有利。2.5B 21.510.50 -1-0.8 -0.6 -0.4 -0.200 20 40.60.61齿轮变位系数X%图2.1斜齿轮变位系数与纵向重合度之间的关系2.2.2渐开线斜齿圆柱齿轮

24、接触线长度的精确计算斜齿圆柱齿轮的接触线总长度,只有在齿宽b恰是轴向基节Pa的整数倍或端面啮合线长度 鼠Pt恰是端面基节R的整数倍时,即当端面重合度 和纵向重 合度邛中有一个为整数时,接触线总长才在任一瞬时包定不变。而当端面重合 度鼠和轴向重合度日都不为整数时,接触线总长度的瞬时值就各不相同。下面 讨论瞬时变化的接触线总长度的推导及计算公式端面重合度一般大丁 1,即在啮合区内同时有几对齿参与啮合。 接触线总 长度L即为各条接触线长度之和。随啮合的进行,每条接触线都在啮合区内移动, 其总长度L 一般是变化的,并以图2.2所示位置为最小。斜齿圆柱齿轮传动啮合 区中大矩形ABCD为啮合平面。岛为基圆

25、螺旋角;够、邛分别为端面重合度和 纵向重合度;、鬲分别为端面基圆齿距和纵向基圆齿距; 确分别为和 邛的小数部分。图2.2斜齿圆柱齿轮传动啮合区及接触线图中小矩形abcd的边长分别为Ex和。显然,当 & +邛=1时,啮合区顶 点必定落在对角线bd上;当 +邛1时,该顶点必定落在 bcd内(见图2.2a); 当矽+珏1时,该顶点必定落在 abd内(见图2.2 )。这样对应图2.2(b)的接 触线总长度比图2.2(a)多出了一段bd'(为bd线段的一部分),二者的计算公 式与变化规律也各不相同1。由图2.2可推导并计算出其平均长度L、最小长度Lmin和最大长度Lmax的改 进公式如下

26、。(2.2)L 一 ;.:Pbxcos bLmax= E5 min(» -)Rxcos b(2.3)当十邛#时,Lmin(;,;一 -;一)Pbx(2.4)(;一 -1) Pbxcos b(2.5)2.3根切齿轮接触线长度随、-:的动态变化规律分析由上推导出的接触线长度计算公式可以绘制出接触线长度相对变化率nim、max随、邛变化曲线图,如图 2.3 , 2.4所示。图中,令nim = Lmin/L ,'-nax = L max / L 01.8041.61.410.80.60.5122.53E三£:1.5一V-X十虚线:实线:%=15点划线:V1-71:2图2.3

27、接触线长度相对变化率知m、舄max随x、8日变化曲线图2.4 接触线长度变化率 乳nm、max随耳耳臼的动态变化规律三维图根据图2.3、图2.4中接触线长度变化率赤nm、max随、邛的动态变化规 律的二维以及三维图分析可知,在啮合面内接触线总长度随亳、邛的变化规律以及啮合过程中的动态变化规律为:当或为整数时,接触线总长度为一定值 L ;当两重合度的小数部分 矽=希时,孺有极小值,君max有极大值。因此, 在斜齿轮设计选择齿宽时,应尽可能使邛接近整数,或使 邛值取大些;当和都不为整数时,接触线总长度是瞬时变化的,这时再把 L作为 平均接触线长度值在概念上显然不妥 ,由上图变化规律知,这时L也不是

28、最小 长度Lmin和最大长度Lmax的简单平均值,而应该是动态统计的平均值。2.3.1动态统计规律下的平均长度由端面重合度的定义可知,在啮合区长度 站Pbt的范围内,Lmin出现的概率为1Lmin Lmax之间变动出现的概率为。这里忽略基圆曲率的微小变化影响,认为Lmin的啮合时间为1-, Lmin Lmax之间的啮合时间为Lmax,则平均接触线长度应为其动态统计规律下的平均长度,即,L十 L 、一 fL L 、一i -、, minmax .,max min .s cL = Lmln (1 - ) + = Lmin + (2.6)L 2/I 2/如图2.5所示,为接触线的最小、最大以及动态统计

29、平均长度比较。由图司知,当一定时,随着&日增大,接触线动态统计平均值一般呈线性增长,但并 不是Lmin和Lmax严格的的平均值。用本文的改进方法计算得到的接触线长度平均 值与现行标准给出的值是有差异的,现行标准中的值并不能反映其动态的持续时 问。一般情况下,这个动态统计下的平均值应小丁其平均值。图2.5接触线长度随 y a日变化规律2.3.2接触线长度变化与重合度 、邛的组合分析由前述分析可知,重合度 、耳日的最佳组合应使L保持不变,而要接触线 总长不变,则应使重合度 或邛中有一个为整数4。由图2.3可看出,在 定的情况下,耳臼为整数时,其接触线相对长度变化率为1,接触线总长始终保持

30、不变,即与啮合位置无关。因此,在齿轮传动设计中,应尽量选择较大的,或选择合适的齿宽,使值名日尽量取整数。当电、邛均不为整数时,由上图可以看出,在啮合过程中,其总接触线长 度是变化的。重合度 、邛的最差组合,是当 如=标时,兀max有极大值,Xnim 有极小值。此时接触线总长的瞬时值变化较大,则会增加轮齿在啮合过程中的应 力脉动,从而增加轮齿在运转中的振动和噪声。 这种情况在斜齿圆柱齿轮设计中 应尽量避免。而在齿轮传动设计中,设计较好的齿轮副,其最小接触线长度约为接触线平 均总长度的95源更大4。2.4本章小结本章首先介绍了接触线长度计算理论,然后对斜齿圆柱齿轮重合度及接触线长度进行了理论计算,

31、并讨论分析了接触线长度随E的动态变化规律。第三章基于MATLAB触线长度的参数化调整3.1引言本意简述了 MATLAB件的计算绘图功能,然后根据第二章的理论计算,借 助MATLA求现斜齿圆柱齿轮接触线长度的参数化调整。3.2MATLAB 简介MATLAB (Matrix Laboratory )是Math Works公司开发的,目前国际上最流 行、应用最广泛的科学与工程计算软件,它广泛应用于自动控制,数学运算,信 号分析,计算机科技,图像信号处理,财务分析,航天工业,汽车工业,生物医 学工程,语音处理和雷达工程等各行各业,也是国内外高校和研究部门进行许多 科学研究的重要工具。由于它具有强大的计

32、算和绘图功能, 大量稳定可靠的算法Fortran库和简洁的编程语言,已成为数学计算工具方面实事上的便准。MATLAB勺产生是与数学计算分不开的,以前的数值计算软件包大多用 或C语言编写,一个软件只能解决一个局部问题,彳艮难广泛应用。到 20世纪70 年代中期,Cleve Moler为了解决线性方程和特征值问题,他和同事开发了 LINPAC捋日EISPAC带Fortran子程序库,后来乂编写了接口程序,取名MATLAB MATLAB始应用与数学界。工程师 Jack Little 将MATLA期C语言重写,1984 年成立Math Works公司,MATLABE式推向市场。MATLAB®

33、言比较好学,因为它语法规则简单,更适应与专业科技人员的思维方 式和书写习惯;与其他计算机语言相比,它用解释方式工作,无需像C和Fortran 语言那样,对源程序进行编译、连接再形成可执行文件,键入程序立即得出结果, 因此更加简捷和智能化,人机交互性能好;它可应用多种平台,随计算机软、硬 件的更新而及时更新升级,使得编程和调试效率大大提高。MATLAB的特点:1. 功能强大(1)运算功能强大。MATLAB!以复数矩阵为基本编程单元的程序设计语言,其强 大的运算功能使其成为世界顶尖的数学应用软件之一。功能丰富的工具箱。大量针对各专业应用的工具箱的提供,使MATLABS用于 不同领域。 文字处理功能

34、强大。MATLAB勺Notebook为用户提供了强大的文字处理功能, 允许用户从word访问MATLAB勺数值计算和可视化结果。通过使用MATLAB勺Notebook,用户可以创建MATLAB勺程序文档、技术报告、注释文档、手册或教 科书。2. 人机界面友好,编程效率高MATLAB勺语言规则与笔算式相似,其矩阵的行列数无需定义。由于MATLAB勺命令表达方式与标准的数学表达式非常接近,因此,易写易读并易于在科技人员之间交流。3. 强大而智能化的作图功能MATLAEM以方便地将工程计算结果可视化,使原始数据的关系更加活晰明了, 并揭示了数据的内在联系。MATLAB根据输入数据自动确定最佳坐标;规

35、定多 种坐标系;设置不同颜色、线型、视角等,并能绘制三维坐标中的曲线和曲面。4. 可扩展性强MATLAB件包括基本部分和工具箱两大部分,具有良好的可扩展性。MATLAB勺函数大多为ASCII文件,可直接编揖、修改,MATLAB勺工具箱可以任意增减。5.Simulink动态仿真功能MATLAB勺Simulink提供了动态仿真的功能,用户能够通过绘制框图来模拟一个 线型、非线型、连续或离散的系统,通过 Simulink仿真并分析该系统。3.3 基于MATLAB勺接触线长度参数化调整实例利用MATLA豌大的数值计算及绘图功能,完成变位根切齿轮的计算,并通 过窗口界面来输入参数和输出计算结果, 从而实

36、现计算的程序化和参数的动态调 整。具体输入参数及输出后的参数值见图 5所示:0 21 2接触线动恣统计_平均长度*一0 6 Q B £x8 7 6 o o O rtu Q O5 4 3 O & O o o O2 10o Do O1.4齿轮模数小齿轮齿数大齿轮齿数螺旋角齿宽小齿轮变位 系皱大齿轮变位意数退出端面重台度弟=68.6408 mm1.38373黝向重合度eB137 308开始计算图5输入参数后计算变位根切齿轮接触线长度的界面3.4本章小结本章首先对MATLAB件进行了介绍,简述了 MATLAB勺计算绘图功能及其特 点,并根据第二章的理论计算,借助 MATLAB亏斜齿圆

37、柱齿轮接触线进行参数化的调整第四章结语齿轮是机器、仪器中使用最多的传动零件,尤其是渐开线圆柱齿轮的应用更 为广泛。齿轮是一个较复杂的几何体,对单个齿轮的齿廓加工误差国家标准规定 了 17种控制参数,根据齿轮使用要求的不同,对以上17个参数控制的要求也不 同。如何确定齿轮的精度等级以及依据其精度等级确定相关控制参数的公差值, 是齿轮设计的关键所在。本文给出了渐开线根切变位圆柱斜齿轮的端面重合度计算公式,推出它的接触线长度的精确计算公式,并首次采用动态统计规律下接触线平均长度作为计算 的平均值,使齿轮传动的设计和校核更加精确合理。利用MATLA歌件,绘制出了接触线长度变化率随端面重合度、纵向重合度

38、 的二维和三维图,并分析出重合度的最佳和最差组合条件。 同时,给出了接触线 长度计算的程序化和参数的动态调整,从而为齿轮的传动设计提供了理论依据和 简捷算法。附录程序斜齿轮变位系数与纵向重合度之间的关系clear all球解变位斜齿轮传动计算公式的基本参数mn=0.003;z1=14;z2=26;an=20*pi/180;% 这里 an 取 20 度bata=15;%这里bata的值一般取 8-20度bata=(bata*pi)/180);B=0.05;% 齿宽 Bhan=1;%端面齿顶高系数,取标准值han=1xn1=0.4;%xn2=-0.6;% 端面变位系数k=200; %基本参数及重合

39、度计算for i=0:1:kxn2=-1+0.01*i;i=i+1;hat=han*cos(bata);mt=mn/cos(bata);xt1=xn1*cos(bata);xt2=xn2*cos(bata);at=atan(tan(an)/cos(bata);batab=atan(tan(bata)*cos(at);at1=(2*(xt1+xt2)*tan(at)/(z1+z2)+at;a0=mn*(z1+z2)/(2*cos(bata);a1=a0*cos(at)/cos(at1);yt=(a1-a0)/mt;deltayt=xt1+xt2-yt;%hat1=hat+xt1-deltayt;

40、hat2=hat+xt2-deltayt;da1=(z1+2*hat1)*mt;da2=(z2+2*hat2)*m t;於里注意要考虑齿顶高系数的变动影响db1=mt*z1*cos(at);db2=mt*z2*cos(at);da1=(z1+2*hat+2*xt1-2*deltayt)*mt;da2=(z2+2*hat+2*xt2-2*deltayt)*mt;aat1=acos(db1/da1);aat2=acos(db2/da2);sigmaa=(z1*(tan(aat1)-tan(at1)+z2*(tan(aat2)-tan(at1)/(2*pi);sigmab=(B*sin(bata)/

41、(pi*mn);A(i)=sigmaa;endd=-1:0.01:1;plot(d,A,'k');grid on;hold on;text(-0.3,A(61),'X_n_1= ',num2str(xn1);xlabel('齿轮变位系数 X_n_2');ylabel('纵向重合度系数 epsilon_alpha');xn1=0;%xn2=-0.6;%端面变位系数k=200; %基本参数及重合度计算for i=0:1:kxn2=-1+0.01*i;i=i+1;hat=han*cos(bata);mt=mn/cos(bata);xt1

42、=xn1*cos(bata);xt2=xn2*cos(bata);at=atan(tan(an)/cos(bata);batab=atan(tan(bata)*cos(at);at1=(2*(xt1+xt2)*tan(at)/(z1+z2)+at;a0=mn*(z1+z2)/(2*cos(bata);a1=a0*cos(at)/cos(at1);yt=(a1-a0)/mt;deltayt=xt1+xt2-yt;%hat1=hat+xt1-deltayt;hat2=hat+xt2-deltayt;da1=(z1+2*hat1)*mt;da2=(z2+2*hat2)*m t;於里注意要考虑齿顶高系

43、数的变动影响db1=mt*z1*cos(at);db2=mt*z2*cos(at);da1=(z1+2*hat+2*xt1-2*deltayt)*mt;da2=(z2+2*hat+2*xt2-2*deltayt)*mt;aat1=acos(db1/da1);aat2=acos(db2/da2);sigmaa=(z1*(tan(aat1)-tan(at1)+z2*(tan(aat2)-tan(at1)/(2*pi);sigmab=(B*sin(bata)/(pi*mn);A(i)=sigmaa;endd=-1:0.01:1;plot(d,A,'k');grid on;hold o

44、n;text(-0.3,A(60),'X_n_1= ',num2str(xn1);xlabel('齿轮变位系数 X_n_2');ylabel('纵向重合度系数 epsilon_alpha');xn1=0.8;%xn2=-0.6;%端面变位系数k=200; %基本参数及重合度计算for i=0:1:kxn2=-1+0.01*i;i=i+1;hat=han*cos(bata);mt=mn/cos(bata);xt1=xn1*cos(bata);xt2=xn2*cos(bata);at=atan(tan(an)/cos(bata);batab=atan

45、(tan(bata)*cos(at);at1=(2*(xt1+xt2)*tan(at)/(z1+z2)+at;a0=mn*(z1+z2)/(2*cos(bata);a1=a0*cos(at)/cos(at1);yt=(a1-a0)/mt;deltayt=xt1+xt2-yt;%hat1=hat+xt1-deltayt;hat2=hat+xt2-deltayt;da1=(z1+2*hat1)*mt;da2=(z2+2*hat2)*m t;於里注意要考虑齿顶高系数的变动影响db1=mt*z1*cos(at);db2=mt*z2*cos(at);da1=(z1+2*hat+2*xt1-2*delta

46、yt)*mt;da2=(z2+2*hat+2*xt2-2*deltayt)*mt;aat1=acos(db1/da1);aat2=acos(db2/da2);sigmaa=(z1*(tan(aat1)-tan(at1)+z2*(tan(aat2)-tan(at1)/(2*pi);sigmab=(B*sin(bata)/(pi*mn);A(i)=sigmaa;endd=-1:0.01:1;plot(d,A,'k');grid on;hold on;text(-0.3,A(60),'X_n_1= ',num2str(xn1);xlabel('齿轮变位系数 X_n_2');ylabel(' 纵向重合度系数 epsilon_alpha');xn1=-0.4;%xn2=-0.6;%端面变位系数k=200; %基本参数及重合度计算for i=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1