建筑结构减隔震及结构控制技术及现状和发展趋势.docx

上传人:scccc 文档编号:13070309 上传时间:2021-12-13 格式:DOCX 页数:15 大小:29.39KB
返回 下载 相关 举报
建筑结构减隔震及结构控制技术及现状和发展趋势.docx_第1页
第1页 / 共15页
建筑结构减隔震及结构控制技术及现状和发展趋势.docx_第2页
第2页 / 共15页
建筑结构减隔震及结构控制技术及现状和发展趋势.docx_第3页
第3页 / 共15页
建筑结构减隔震及结构控制技术及现状和发展趋势.docx_第4页
第4页 / 共15页
建筑结构减隔震及结构控制技术及现状和发展趋势.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《建筑结构减隔震及结构控制技术及现状和发展趋势.docx》由会员分享,可在线阅读,更多相关《建筑结构减隔震及结构控制技术及现状和发展趋势.docx(15页珍藏版)》请在三一文库上搜索。

1、.建筑结构减隔震及结构控制技术的现状和发展趋势张建东· 阅读:4 次 · 上传时间:2006-06-26 · 推荐人: nantong(已传资料 193 套)· 简介:建筑结构减隔震及结构控制技术的现状和发展趋势 · 关键字:减隔震,结构控制技术 一、传统的抗震方法 地震是由于地面的运动,使地面上原来处于静止的建筑物受到动力作用而产生强迫振动,因而在结构中产生内力、变形和位移。经过简化后模型的动力学分析,即一次次的震害分析进行修正、补充,得到一些建筑物在地震作用下的反应机理及破坏形式,提出了一些建筑物抗争的计算方法及设计的基本原则。这些在实际应

2、用中得到了很不错的效果。 1、概念设计的一些原则1)总体屈服机制。例如强柱弱梁。2)刚度与延性均衡。砌体结构中为提高延性设构造柱与圈梁,形成一个较弱的框架。3)强度均匀。结构在平面和立面上的承载力均匀。4)多道抗震防线。5)强节点设计。6)避开场地卓越周期区。2、在此基础上作结构地震反应分析,其分析方法主要有:地震荷载法;振型分解法;动力时程分析法。现在还发展了push-over法、能力谱等方法。抗震设防目标也从单一的、基于生命安全的性态标准发展到基于各种性态,强调“个性”设计的设计理念。3、传统抗震方法的缺点与不足传统抗震结构主要利用主体结构构件屈服后的塑性变形能和滞回耗能来耗散地震能量,这

3、使得这些区域的耗能性能变得特别重要,而一旦由于某些因素导致这些区域产生问题,将严重影响到结构的抗震性能,产生严重破坏,由于破坏部位位于主要结构构件,其修复是很难进行的。由于传统抗震结构是以防止结构倒塌为目标,其抗震性能在很大程度上依赖于结构(构件)的延性,以往的许多研究也注重于提高结构(构件)的延性方面,却忽略了对结构损伤程度的控制。4、传统的抗震方法在提高结构性能方面有较多困难。传统抗震结构的耗能能力主要依赖于主体结构的延性。既要求主体结构强度高,又要求延性好,很难实现。1)框架结构许多研究者推荐强柱弱梁体系作为最合适的抗震框架体系。该体系可将地震输入能量分散在结构的许多部位耗散掉,甚至可以

4、控制塑性铰出现的顺序与部位,延性对于使建筑物在罕遇地震中保存下来固然很重要,但这些预期的塑性铰区在中等程度的地震中也会产生,延性也同时应被看作是一种“破坏”。后期修复费用也很高。2)剪力墙结构剪力墙结构体系具有抗侧刚度大,在水平地震作用下的侧移小,其总的水平地震作用也大等特点,常见的震害一般来说为墙面的斜向裂缝或是底部楼层的水平施工缝发生水平错动,当底部屈服后,剪力墙的抗侧作用就很小,且剪力墙的耗能也基本集中与底部塑性铰区域,上部墙体对抵御强震无显著作用。而且剪力墙要承担一定的竖向荷载,因此底部的破坏也十分难修复。3)框架-剪力墙结构从抗震概念设计来说,框架-剪力墙结构具有了多道抗震防线。有框

5、架和墙体组成的抗震结构中,框架的刚度小,承担的地震作用力小,而弹性极限变形值和延性却较小。整个结构在地震作用下,墙体很快超过自身的较小弹性极限变形,出现裂缝,水平承载力下降,此时框架尚未充分发挥自身的水平抗力;墙体开裂后,框架承担的地震力增大,同时由于结构刚度的变化,地震作用效应也发生了变化。但无论是剪力墙还是框架,都是主体结构的一部分,损伤坏后的修复工作都是比较困难的,而且花费也不小。二、减振、隔震和振动控制的现状鉴于上述传统抗震方法的缺点与不足,并在全部了解地震引起结构震动的全过程。由震源产生地震动,通过传播途径传递到结构上,从而引起结构的震动反应。通过在不同阶段采取震动方法控制措施,就成

6、为不同的积极抗震方法。大致包括以下四点:震源消震消震是通过减弱震源震动强度达到减小结构震动的方法,由于地震源难以确定,且其规模宏大,目前还没有有效可行的措施将震源强度减弱到预定的水平。传播途径隔震隔震是通过某种装置将地震与结构隔开,其作用是减弱和改变地震动时结构作用的强度和方式,以此达到减少结构震动的目的。隔震方法主要有基底隔震和悬挂隔震两种。结构被动减震被动减震是通过采取一定的措施或附加子结构吸收和消耗地震传递给主结构的能量,达到减小结构震动的目的。被动减震方法有耗能减震,冲击减震和吸震减震。反应主动减震主动减震是根据结构的地震反应,通过地震系统地执行机,主动给结构施加控制力,达到减小结构震

7、动的目的。结构隔震、减震方法的研究和应用开始于60年代,70年代以来发展速度很快。这种积极的结构抗震方法与传统的消极抗震方法相比,有以下优点:能大大减小结构所收得的地震作用,从而可减低结构造价,提高结构抗争的可靠度。此外,隔震方法能够较准确地控制传到结构上的最大地震力,从而克服了设计结构构件时难以准确确定载荷的困难。能大大减小结构在地震作用下的变形,保证非结构构件不受地震破坏,从而减少震后维修费用,对于典型的现代化建筑,非结构构件(如玻璃幕墙,饰面,公用设施等)的造价甚至占整个房屋总造价的80%以上。隔震、减震装置即使震后产生较大的永久变形或损坏,其复位、更换、维修结构构件方便、经济。用于高技

8、术精密加工设备、核工业设备等的结构物,只能用隔震、减震的方法满足严格的抗震要求。(一)、隔震1、基地隔震1)夹层橡胶垫隔震装置用于隔震装置的橡胶垫块,可用天然橡胶,也可用人工合成橡胶(氯丁胶)。为提高垫块的垂直承载力和竖向刚度,橡胶垫块一般由橡胶片与薄铜板叠合而成。2)铅芯橡胶支座这样就使支座具有足够的初始刚度,在风荷来和制动力等常见载荷作用下保持具有足够的刚度,以满足正常使用要求,但强地震发生时,装置柔性滑动,体系进入消能状态。3)滚珠(或滚轴)隔震有自复位能力的;有加铜拉杆风稳定装置;横向油压千斤顶位的。另外,还有加消能装置的,消能装置有软消能杆剪,铅挤压消能器,油阻尼器,光阻尼器等。4)

9、悬挂基础隔震5)摇摆支座隔震同原理还有踏步式隔震制作,用于细高的结构物,如烟囟、桥墩、柜体筒体建筑物等。6)滑动支座隔震上部结构与基础之间设置相互滑动的滑板。风载、制动力或小震时,静摩擦力使结构固结于基础上;大震时;结构水平滑动,减小地震作用,并以其摩擦阻尼消耗地震能源。为控制滑板间的摩擦力,使之满足隔震要求;在滑板间可以加设滑层。目前常用的滑层有:涂层滑层(聚氯乙烯)、粉粒滑层(铅粒、沙粒、滑石、石墨等)。2、悬挂隔震悬挂隔震使将结构的全部或大部分质量悬挂起来,是地震动传递不到主体质量上,产生较小的惯性力,从而起到隔震作用。悬挂结构在桥梁、火电厂锅炉架等方面有大量应用。著名的43层香港汇丰银

10、行新大楼采用的就是悬挂结构。悬挂结构悬杆受力较大,须采用高强钢,而高强钢忍性差,在竖向地震作用时易拉断。为减小竖向地震作用,可在吊点设减震弹簧,并配合使用阻尼器。3、隔震应用的注意事项:1)隔震实际上会使原有结构的固有周期演唱,在下列情况下不宜采用隔震设计:基础土层不稳定;下部结构变性大,原有结构的固有周期比较长;位于软弱场地,延长周期可能引起共振;制作中出现负反力;2)隔震装置必须具有足够的初始刚度,这样能满足正常使用要求。当强震发生时,装置柔性消震,体系进入消能状态。3)隔震装置能使结构在基础面上柔性滑动,在地震来时这样必然会产生很大的位移。为减低结构的位移反应,隔震装置应提供较大的阻尼,

11、具有较大的消能能力。4、隔震体系的优点:1)明显有效地减轻结构的地震反应。从振动台地震模拟试验结果及美国,日本建造的隔整结构在地震中的强震记录得知,隔振体系的结构加速度反应只相当于传统结构(基础固定)加速度反应的1/31/10。这种减震效果是一般传统抗震结构所望尘莫及的。从而能非常有效地保护结构物或内部设备在强地震冲击下免遭任何毁坏。2)确保安全。在地面剧烈震动时,上部结构仍能处于正常的弹性工作状态。这既适用于一般民用建筑结构,确保居民在强地震中的绝对安全,也适用于某些重要结构物和重要设备。3)减低房屋造价。从汕头,广州,西昌等地建造隔震房屋得知,多层隔震房屋比传统多层隔震房屋节省房屋土建造价

12、:7度区节省36%,8度区节省814%,9度区节省1520%。并且安全度大大提高。4)抗震措施简单明了。抗震涉及的对象从考虑整个结构物的复杂的不明确的抗震措施转变为只考虑隔震装置,简单明了。结构物本身与一般非地震区的做法无疑,设计施工大大简化。5)震后修复方便:地震后,只对隔震装置进行必要的检查更换。而无需考虑建筑结构物本身的修复,地震后可很快恢复正产生活或生产,这带来极明显的社会效益和经济效益。(二)被动减震1、耗能减震1)结构消能减震体系的特点:结构消能减震体系是把结构的某些非承重构件(如支撑剪力墙等)设计成消能杆剪,或在结构物的某些部位(节点或连接)装设阻尼器,在风荷载轻微地震时,这些消

13、能杆件或阻尼器仍处于刚弹性状态,结构物仍具有足够的侧向刚度以满足正常使用要求,在强地震发生时,随着结构受力和变形的增大,这些消能杆件和阻尼器,率先进入非弹性变形状态,产生较大阻尼,大连消耗输入结构的地震能量,从而使主体结构避免进入明显的非弹性状态并迅速衰减结构的地震反应,从而保护主体结构在强地震中免遭损失。与传统的结构抗震体系相比较,它有如下的优越性:传统的结构抗震体系是把结构的主要承重构件(梁、柱、节点)作为消能构件,地震中受损坏的是这些承重构件,甚至导致房屋倒塌。而消能减震体系则是以非承重构件作为消能构件或另设阻尼器,他们的损坏过程是保护主体结构的过程,所以是安全可靠的。震后易于修复或更换

14、,是建筑结构物迅速恢复使用。可利用结构的抗侧力构件(支撑、剪力墙等)作为消能杆件,无需专设。有效地衰减结构的地震反应。由于上述的优越性,消能减震体系被广泛用于高层建筑的抗震,高耸构筑物(塔、架等)的抗震或抗风,单层工业厂房排架纵向抗震,管线系统减震保护等。2)结构消能减震体系的设计和工程应用:消能减震体系按其消能装置的不同,可分为二类:消能构件减震体系:利用结构的非承重构件作为消能装置的结构减震体系。常用的消能构件有:消能支撑:耗能交叉支撑,摩擦耗能支撑,耗能偏心支撑,耗能隔撑。一般支撑杆件大都用软钢制作,取材容易,屈服点适当,延性好,故有较高的消能减震性能。构件大都采用非弹性“弯曲”变形的消

15、能减震性能,具有较高抵抗周疲劳破坏的能力。消能剪力墙:竖缝消能剪力强、横缝消能剪力墙、周边缝消能剪力墙等。其混凝土的接缝面可以填充粘性材料能或用钢筋联接。强地震时,出现非弹性的缝面错动,产生阻尼,消耗地震能量。阻尼器消能减震体系:在结构的某些部位(支撑杆件、剪力墙与边框联结处、梁柱节点处等)装设阻尼器(软钢阻尼器、挤压铅阻尼器、摩擦阻尼器、粘弹性阻尼器等)。在强地震时,结构物这些部位发生较大变形,从而使装设在该部位的阻尼器有效的发挥消能作用。2冲击减震冲击减震是依靠附加活动质量与结构之间的非完全弹性碰撞达到交换动量和耗散动能进而实现减小结构地震反应的技术。实际应用时,一般在结构的某部位(常在顶

16、部)悬挂摆锤。结构震动时,摆锤撞击结构使结构震动衰减。另外,摆锤还兼有吸振器的功能。3吸振减震吸震减震是通过附加子结构,使结构的震动发生位移,即使结构的振动能量在原结构与子结构之间重新分配,从而达到减小结构震动的目的。目前,工程结构应用的吸震减震装置主要有:调谐质量阻尼器(简称TMD),调液(柱)阻尼器(简称TLD或TLCD)悬吊质量摆阻尼器(简称SMPD)和质量放大器。(三)主动控制减震主动控制减震体系是利用外部能源,在结构受地震激励震动过程中,瞬时改变结构动力特性和施加控制力,以衰减结构地震反应的自动控制体系。主动控制体系中的控制器有三部分组成。传感器。安装在结构上,测量结构所受外部激励或

17、结构反应或两者,将测量的信息传递给控制器的处理器。处理器。处理测得的信息,根据给定的控制算法,计算所需的控制力,并将控制信息传递给控制器中的致动器。致动器。根据控制信息,有外部供给能源产生所需的控制力,从而减小结构振动反映。根据控制器的工作方式,主动控制体系分三种类型:开环控制。根据外部激励信息调整控制力。闭环控制。根据结构反应信息调整控制力。开笔环控制。根据外部激励和结构反应的综合信息调整控制力。主动控制是振动控制的现代方法,他已广泛用于电子工程,机械工程,航空航天工程等领域,但在土木工程中应用该方法进行结构主动控制尚是一个新兴研究方向。结构震动主动控制装置主动拉索。主动拉索控制系统由连接在

18、结构上的预应力钢拉索构成,在拉索上安装一套液压伺服机系统。主动调频质量阻尼器。是在TMD的基础上增加主动控制力而构成的减震器。气体脉冲发生器。这是一种通过喷管释放高压气体产生脉冲动力,以减弱结构振动反应的装置。(四)半主动控制和混合控制1、半主动控制半主动控制兼有被动控制和主动控制的优点。它具备主动控制的效果又只需很小的电能通过调节和改变结构的性能减小地震反应,因此比较适合于改善工程结构的抗震设防。1)变阻尼半主动控制对变阻尼半主动控制的研究一度非常活跃,其目的在于寻找比定阻尼系统更好的减震效果,但事实上人们早已知道,阻尼的减振效果是有条件的。但单自由度体系基座受到简谐运动激励时,阻尼愈大,结

19、构和相对运动(位移、速度和加速度)不断减少;对绝对运动则不然,当干扰频率与自振频率的比值时,增大阻尼反而会使绝对位移、速度和加速度反应增大。在地震作用下也可能出现类似的情况。这说明对中、短周期的结构,当设计地震动的主要周期较短时,不必要采用半主动变阻尼系统。但是对于长周期结构,采用半主动变阻尼控制方法与采用上限阻尼时相比可以明显地减小绝对加速度反应,对相对反应也无不利影响。看来只有当需要同时减小长周期结构的相对位移反应和绝对加速度反应时才有必要采用变阻尼半主动控制。常见的变阻尼半主动控制有变孔径油阻尼器、电流变阻尼器、磁流变阻尼器、变摩擦可控阻尼器、调谐质量可控阻尼器。2) 变刚度半主动控制系

20、统(AVS)日本鹿岛公司在他们的大型振动台控制楼上采用了AVS系统以减小中震和大震中的反应。在此系统中,应用液压元件改变刚性支撑和大梁的连接条件,随时调节层间刚度,避免共振。变刚度和变阻尼系统应属于变结构控制的范畴,其理论基础在自动控制领域中已有深入地研究。在变刚度半制动控制系统中结构的层间水平刚度可以在其最大值和最小值之间跳跃或随意调节。当强震地面运动的主要频率不在被控结构自振频率的可能的变化范围以内时,对系统将产生什么样的影响则是值得研究的问题。2、混合控制将主动控制与被动控制结合起来应用或采用其它复合控制方式通常称为混合控制,其最常用的形式是用作动器拖动调谐质量阻尼器(HMS)。主动控制

21、、半主动控制和混合控制由于都需要实时观测结构反应并进行实时分析和反馈控制,系统极为复杂,在推广应用方面受制于经济和技术条件。相比之下以增加结构阻尼、避免共振的被动控制技术则更适合在众多的实际工程中应用。三、今后的发展趋势传统的依赖结构延性的抗震措施是以一定的损伤为代价减小地震反应,应用见证效能技术则可以减小结构本身的损伤,对各类结构基本上能使用,其减震效果对地面运动特性依赖性较小,耗资也不是很大,因此是可以广泛使用的方法。值得注意的是增大阻尼在减小结构相对位移反应和变形的过程中有时会使结构的绝对速度和加速度增大,从而对内部设备和人员带来某些不利影响。基础隔震对在短周期内地面运动影响下的中短周期

22、结构而言,其减震效果比消能技术更好,但对地面运动输入特性比较敏感,不能完全消除共振的危险性。半主动控制和混合控制方法可以满足不同的设防要求,对地面运动和结构本身不确定性的地适应能力更强,可以提高结构在地震作用下的安全性,引入智能元件以后,效果会更好,因此是值得重视的新领域。此外尚应在不同学科和专业之间开展合作和交叉研究,开发使用的装置、机构和配套技术,尽快形成新的产业,以支持新技术的推广应用。结构振动控制的研究和应用需要讲传统的建造技术与高新技术相结合,使结构的安全保障系统成为智能结构的重要组成部分,为人类营造一个更加安全舒适的工作和生活环境。一个实用的减隔震设计龚一琼 胡勃 袁万城 胡世德&

23、#183; 阅读:3 次 · 上传时间:2006-06-26 · 推荐人: nantong(已传资料 193 套) · 简介:连续梁桥具有结构刚度大、变形小的特点,在我国有着广泛的应用。对连续梁桥的空间地震反应分析表明1,由于连续梁桥一般只设置一个固定墩,在地震荷载作用下,纵桥向的地震荷载的绝大部分均由设置在固定墩上的固定支座来承受,因此,固定墩处于十分不利的受力状态。如果一味要求固定墩满足强度要求、在弹性范围内工作,不仅是不经济的,而且也没有必要。本文探讨了一种新颖的作法,即利用减隔震的基本原理,在不改变原桥梁主体结构的情况下,仅对固定支座进行适当的减隔震设计,

24、以满足"小震不坏、中震可修、大震不倒"的设计要求。 · 关键字:连续梁桥,减隔震,固定支座,相对固定 一、减隔震原理延长结构的自振周期可以有效地减小结构的地震加速度反应,从而减小结构由于地震所遭受到的地震荷载。对于桥梁结构,采用橡胶支座、聚四氟乙烯支座以及其他滑动支座即瓦达到增加结构柔性、延长结构自振周期的目的。但是,随着结构自振周期的延长,梁体与墩台之间的相对位移也同时增加。为了减小由于结构自振周期延长而增加的梁墩相对位移,可以采用增加结构阻尼的方法。加大结构的阻尼,地震引起的位移反应能得到明显的抑制1。综上所述,减隔震的基本原理为:(1)采用柔性支承,以延长结

25、构的自振周期,从而减小结构由于地震引起的内力反应;(2采用阻尼器或耗能装置,以控制由于周期延长而导致的过大的相对位移; (3)具有足够的刚度和强度,以支承正常使用极限状态下的水平力(如风荷载、汽车制动力等)。二、工程背景本文以某五跨连续梁桥为工程背景,该桥跨径组合为49.903X80.0049.90(m)。桥址的土质(在地表以下20.0m范围内)为淤泥、淤泥质亚粘土、粘土和细砂,地基容许承载力0130kPa。根据公路工程抗震设计规范(JTJ00489)第4.2.2条规定,确定该桥场地类别为类场地上。该连续梁桥的上部结构为两个分离的单箱单室变截面箱梁,主域处梁高4.5m,边墩及跨中的梁高均为2.

26、0m;主墩为变截面空心柱体,边域为排架式撤柱,纵桥向两排,每排3个实心嫩柱、主梁和桥墩之间采用盆式橡胶支座连接。1分析模型该桥的抗震计算采用同济大学土木工程防灾国家重点实验室桥梁抗震学科组编制的程序NSRAP进行。考虑到桥墩基础为钻孔灌注桩,墩底位移相对较小,将桥墩固结在墩底会增大结构内力反应,故而适当放大结构周期,将墩延长约3倍桩径固结【3】。桥墩依线弹性梁单元来处理。计算中对活动支座考虑其非线性效应,用非线性支座单元处理。采用类场地人工波作为输入地震波,依Eurocode8对地震波进行三个方向组合,以纵桥向为验算主方向【4】。设计基本烈度为7度。2验算结果对结构进行非线性时程反应分析。计算

27、结果均以一幅计。3结果分析(1)固定支座设计单位设计的盆式支座布置情况为(以一幅计):两边墩分别设置两个TPZ3000-ZX型盆式橡胶支座,固定墩设置两个TPZ 15000-GDZ型盆式橡胶支座,余主墩上皆各设两个TPZ15000-ZX型盆式橡胶支座。TPZ 15000一GDZ型盆式橡胶支座为抗震型支座,其竖向承载力为15000kN,可承受的最大水平力为15000 X 20 3000kN,故固定墩墩顶所能承受的最大水平力为 6000kN。6度地震荷载作用下,固定墩墩顶所承受的水平力为6455kN,大于其上固定支座所能承受的最大水平力,固定支座被剪坏。(2)固定墩对固定墩的钢筋混凝土截面进行弯短

28、一曲率关系分析,得到其纵向反应及屈服弯矩。7度和8度地震荷载作用下,截面的能力/需求比大于1,表明固定墩墩底截面发生塑性变形,即,在承受一定的轴力作用时,截面所承受的弯矩超过截面屈服弯矩,进入了非线性工作阶段。(3)解决方案由验算可知,该桥在6度地震荷载作用下,固定支座已被剪坏,不能满足桥现关于"小震不坏"的设计要求。而且,固定墩在7度地震荷载作用下的"截面能力/需求比"高达180.4,这说明设计基本烈度地震荷载作用下,固定墩的强度已不能满足。因此,"中震可修"的要求也难以保证。通常遇到这种情况,常采用以下解决方法:(1)将原有支座改

29、为符合承载力要求的抗震型橡胶支座;(2)对桥墩进行延性设计,将桥墩设计得具有足够的延性,在控制变形的前提下,利用塑性镇来耗能;同时由于塑性铰的出现而使结构的基本自振周期延长,从而减小了地震所产生的惯性力。本文在进行抗震验算时,该桥主体方案已经确定,并已经开始施工。在这种情况下,在不增加工程造价的前提下,采用了第一种方案,即对原有的固定支座进行了再设计,引入减隔震概念,以使其满足设计要求。 三、减隔震设计1设计思路以往在进行抗震设计时,设计师总是过多地强调强度要求,希望采用的支座可以满足最大的地震荷载。可是,地震荷载具有很大的偶然性和随机性,正常使用极限状态下桥墩所承受的荷载与设计地震荷载时桥墩

30、的受力相比是很小的,以本桥为例仅占 3.23。由此可见,若以设计地震荷载来控制桥墩及支座的设计,在经济上要增加很高的投入,同时桥墩也处于十分不利的受力状态。为此,我们将固定支座设计为相对固定,即在正常使用极限状态和6度地震荷载作用下,固定墩保持正常工作,承担汽车制动力和一定的地震荷载;而在超过6度地震荷载作用下,释放固定墩的顺桥向约束,使整个上部结构能够沿纵桥向滑动,从而延长了结构的自振周期,以达到减震耗能的效果。2设计方案用改造过的 TPZ 15000- ZX盆式橡胶支座来替找原来的 TPZ 15000- GDZ盆式橡胶支座。TPZ 15000-ZX盆式橡胶支座为纵向滑动支座。在TPZ 15

31、000-双盆式橡胶支座的纵桥向加限定钢挡板,用承压型高强螺栓使之与支座顶板连接,并提供约束反力。这样,在正常使用极限状态和矿地震荷载作用下,支座不滑动,承受汽车制动力和定的地震荷载。当地震水平力逐渐增加,大于螺栓设计荷载时,支座螺栓被剪断,滑动面开始相对滑移。在支座上 100mm处设置抗震挡块,以限制支座顶板与底盆的相对位移。(1)钢挡板设计在TPZ 15000-ZX盆式橡胶支座的上顶板和下底盆之间加设两块钢挡板。钢挡板上部与顶板之间以高强螺栓连接,下部与底盆之间以三面围焊焊缝相连。钢挡板的圆弧面与支座钢盆紧贴,外测±100mm设抗震挡块。纵桥向的约束力由钢挡板和高强螺栓共同提供,螺

32、栓被剪断以后,由抗震挡块来控制顶板和底盆之间的相对位移。(2)高强螺栓设计根据前述减隔震设计思路和支座所需承受的顺桥向水平荷载,对高强螺栓进行设计。为保证固定墩免于屈服,以固定墩屈服弯矩对应的水平剪力为设计控制值。固定墩在设计轴向荷载作用下,其屈服弯矩为 125800kN·m,对应水平剪力为6524kN,每个支座需提供 3262kN。采用M24,8.8级高强螺栓。考虑到桥墩在正常使用极限状态下的安全性,采用18个螺栓。螺栓的实际极限承载能力为 168.82 X 18 3038.76kN,小于设计控制值 6.84。3方案验算在全桥变为纵桥向滑动时,将连续梁简化为只有7个自由度的平面结构

33、。利用自编程序对该桥进行分析,6度地震荷载作用下,固定墩墩底截面的内力。8度地震荷载作用下,固定墩的剪力及弯矩均有大幅度的下降,其中剪力仅为改造前的95.42,弯矩为改造前的93.56,这使得桥墩的安全系数大大提高。同时,主梁的纵向位移及梁。墩的相对位移有所增大,梁体的最大正向位移为 81.4mm,最大负向位移为13.2mm,但位移幅度仍在支座的允许滑动范围(±100mm)以内。四、结论本文根据减隔振原理对连续梁桥的固定支座进行了减隔震设计,结果表明:(1)在正常使用极限状态和地震荷载作用下,固定墩仍处于弹性受力状态,受力性能得到明显改善;(2)梁体的纵向位移及梁、墩的相对位移虽然有

34、所增大,但位移幅度仍在支座的允许范围内;(3)工程的总体造价并没有显著提高。采取减隔震措施后,在遭遇到地震时,桥梁的主体结构并没有破坏,只需在震后对支座的高强螺栓和锚固钢挡板进行更换,从而既满足了桥梁"小震不坏、中震可修、大震不?quot;的设计要求,又为实际工程人员所接受,不失为一种切实可行的办法。彩虹岭公路隧道的机械化施工肖海苑,黄经纬,曾新乐· 阅读:3 次 · 上传时间:2007-07-21 · 推荐人: tipiwolf(已传资料 6147 套) 1  工程概况彩虹岭隧道全长5.06km隧道净高5.0m,行车道宽2×3.75

35、m,余宽2×0.25m,路缘带宽2×0.5m,检修道宽2×0.75m。彩虹岭隧道围岩分类为(80m)、(323m)、(1 145m)、(1 220m)。因隧道较长,隧道右侧设置了疏散通道(疏散通道施工时作为平行导洞),同时设计了车行横洞、人行横洞及紧急停车带各6处。车行横洞净宽4m,间距约500m;人行横洞净宽2m,净高2.2m,间距约500m;隧道内间隔500m左右设一紧急停车带,设在双洞单向行车方向右侧。广东省长大公路工程有限公司负责标段施工。标段(进口工区)K14+210K17+350,隧道施工长2 768m,平导施工长2 791m。2  开挖方法*;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1