初中数学竞赛中多元极值问题的常用解法.doc

上传人:doc321 文档编号:13444302 上传时间:2021-12-26 格式:DOC 页数:5 大小:375.50KB
返回 下载 相关 举报
初中数学竞赛中多元极值问题的常用解法.doc_第1页
第1页 / 共5页
初中数学竞赛中多元极值问题的常用解法.doc_第2页
第2页 / 共5页
初中数学竞赛中多元极值问题的常用解法.doc_第3页
第3页 / 共5页
初中数学竞赛中多元极值问题的常用解法.doc_第4页
第4页 / 共5页
初中数学竞赛中多元极值问题的常用解法.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《初中数学竞赛中多元极值问题的常用解法.doc》由会员分享,可在线阅读,更多相关《初中数学竞赛中多元极值问题的常用解法.doc(5页珍藏版)》请在三一文库上搜索。

1、 初中数学竞赛中多元极值问题的常用解法嘉积中学海桂学校 刘红军多元极值问题是初中数学竞赛中的常见题型,此类问题有着极为丰富的内涵,它涉及的知识面广,综合性强,解法颇具有技巧性,解答这类问题可以根据不同情况的具体特点,采取不同的方法,现以近年来的数学竞赛题为例,介绍这类问题的常用解法,供大家参考.一、配方法:配方法是数学中的一种重要的方法,将代数式等式配方成假设干个完全平方式的形式,结合非负性质,问题常能顺利解决.例1 设,为实数,代数式的最小值为 .(2005年武汉CASIO选拔赛试题)分析与解:配方得:原式=显然,当时,原式有最小值-10.同类型试题: 设,为实数,代数式的最小值为 .(第2

2、1届江苏省初中数学竞赛试题),此题也可以用配方法来解决,最小值为3.二、消元法:把多个元素转化为某一元素为主元,再结合条件,经过合理的运算,使问题逐步简化,便利求解.例2 ,为整数,且,假设,那么:的最小值是: .(2006年全国初中数学竞赛决赛试题)分析与解:由,得 因为,为整数,所以,的最大值为1002于是,的最大值为5013例3 假设,且x、y、z均为非负数,那么的最大值为_.(2007年全国初中数学竞赛海南赛区初赛试题)分析与解:由用x来表示y、z,得y=402x,z=x10,又由y0,z0,得解得10x20,又把y=402x,z=x10代入M=5x+4y+2z得,M=x+140,显然

3、M是关于x的一次函数,且M随x增大而减小,所以当x=10时,M的最大值为130.三、数形结合法: 数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数或“以数解形即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.例4 ,且那么的最小值为 A3 B4 C5 D分析与解:这道题,初识实感无从下手,假设将“式转化成“形那么或轻松解.如图1分别以、1和、2为直角边,、为斜边,构造如图1所示的两个、。由图形显见,当点C位于直线 AD上时,AC+AD最短,即的值最小.A GB C ED21图 1于是过点A作AG垂直DE的延

4、长线交于G点,那么四边形ABEG是矩形,又在中,DG=3,AG=5, 斜边AD=, 由勾股定理可得:AD= 故应选择D。同类型试题: ,均为正数,且,求的最小值(2003年北京市初二数学竞赛试题),此题也可以用此方法来解决,最小值为.四、均值代换法:在数学问题中,出现条件时,我们常作代换,这种代换称为均值代换.例5 假设,均为正数,且,求的最小值.分析与解:由,设: ,那么= 当时,即时,此时,原式有最小值:.五、和差代换法:对于任意的实数,,总有 ,假设令那么有:,这种代换称为和差代换.例6 实数满足,那么t的取值范围是 _.分析与解:设,把它们代入 中,得: 化简得: 因为: 即:六、参数

5、法:参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量参数,以此作为媒介,再进行分析和综合,从而解决问题.例7 假设,那么可取的最小值为 2003年武汉选拔试题A. 3B. C. D. 6解:设 那么所以 当时 的值最小为,应选B七、整体设元法:就是把一些看似彼此独立而实质是紧密相联系的量看成一个整体去设元、列式、变形、消元、代入和求值等.例8 ,为实数,那么的最小值是 分析与解:此题要直接求出所求式子的值很困难,故可以采取整体设元,巧妙运用二元一次方程的根的判别式来解决,思路就显得非常简捷.设=,将等式整理成关于为主元的二次方程,得为实数 即 就是 ,当时,有.故当时, 有最小值,即代数式有最小值是-1.八、利用函数的性质:借助二次一次函数的增减性,并注意自变量的取值范围,可使问题迎刃而解.例9 ,且,求的最小值.( 2004年“TRULY®信利杯全国初中数学竞赛试题)分析与解:将等式两边平方得 整理可得: 又 ,得.故=此为关于的二次函数,且开口向上,对称轴为=2 ,又由于,知当时, 取得最小值4.多元极值问题的解法不仅是上述几种,还有其它的解法,在此就不一一说明了.在做题的过程中,要通过观察、分析、开掘,促使题目中的隐含条件显现出来,然后采用恰当的解法解答这类问题.5 / 55

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1