初中数学竞赛第二轮专题复习(三)几何.docx

上传人:scccc 文档编号:13703781 上传时间:2022-01-22 格式:DOCX 页数:6 大小:90.46KB
返回 下载 相关 举报
初中数学竞赛第二轮专题复习(三)几何.docx_第1页
第1页 / 共6页
初中数学竞赛第二轮专题复习(三)几何.docx_第2页
第2页 / 共6页
初中数学竞赛第二轮专题复习(三)几何.docx_第3页
第3页 / 共6页
初中数学竞赛第二轮专题复习(三)几何.docx_第4页
第4页 / 共6页
初中数学竞赛第二轮专题复习(三)几何.docx_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《初中数学竞赛第二轮专题复习(三)几何.docx》由会员分享,可在线阅读,更多相关《初中数学竞赛第二轮专题复习(三)几何.docx(6页珍藏版)》请在三一文库上搜索。

1、初中数学竞赛第二轮专题复习(3)几何初中数学竞赛第二轮专题复习(3)几何证明的基本方法(2)第#页,共5页初中数学竞赛第二轮专题复习(3)几何证明的基本方法(2)割补法在求解平面几何问题时,根据问题的题设和结论,合理适当地将原来的图形割去部分,或补上一部分,变成一个特殊的、简单的、整体的、熟悉的图形,使原来问 题的本质得到充分显示,通过对新图形的分析,探索原来问题的答案,我们把这种方法称之为割补法.1.1 割补法证明举例:如图,在四边形 ABCD中,/B = Z C= 600 , BC=1 ,以CD为直径作圆与 AB相切于点M ,且交BC于点E,求线段 BE的长度.法一:(割出等腰三角形)法二

2、:(割出平行四边形)法三:(割出正方形)法四:(补出正三角形)法五:(补出直角三角形)1.2 几种常见的割补策略:(1)补出三角形:例题 1 :梯形 ABCD 中,AB/CD , / A+ / B= 90O , AB=a , CD=b , E, F 分别是 AB, CD的中点,求 EF的长度.例题2:在 ABC中,AC=BC , / ACB= 900, D是AC上一点,且 AE垂直BD的 延长线于 巳 又有AE田5BD,求证:BD平分/ ABC .例题3:凸六边形 ABCDEF的六个内角都相等,AB=a , BC=b , CD=c , DE=d,求六边形的面积.(2)补出四边形:例题4 :在等

3、腰三角形 ABC的两腰 AB , AC上分别取两点 E与F,使AE=CF ,若BC=2 ,求证:EF 1.变换法1某些平面几何同题,由于图形中的几何性质比较隐晦,条件分散,题设与结论间 的某些元素的相互关系在所给的图形中不易发现,使之难以思考而感到束手无策,如 果我们能对图形作各种恰当的变换,把原图形或原图形中的一部分从原来的位置变换到另一个位置,或作某种变化,往往能使图形的几何性质明白显现,分散的条件得到汇聚,就能使题设和结论中的元素由分散变为集中,相互间的关系变得清楚明了,从 而能将求解问题灵活转化,变难为易,我们把这种恰当地进行图形变换来求解平面几 何间题的方法称为几何变换法 将几何图形

4、按照某种法则或规则变换成另一种几何图形的过程叫做几何变换, 面几何中的几何变换主要有合同变换、相似变换、等积变换以及反演变换 1.1合同变换:在一个几何变换(以下简称变换)下,如果任意两点之间的距离等于变化后的两点之间的距离, 则称f是一个合同变换,合同变换只改变图形的相对位置,不改变其形状和大小、合同变换有三种基本类型:平移变换,轴反射变换,旋转变换.(1)平移变换:将平面图形上的每一个点都按一个定方向移动定距离的变换叫做平移变换,定方向称为平移方向,定距离称为平移距离,显然,在平移变换下,两对应线 段平行(或共线)且相等,因此,凡已知条件中含有平行线段,特别是含有相等线段 的平面几何间题,

5、往往可用平移变换简单处理,平移时可移线段,也可移角或图形.例题1 :如图, ABC 中,在 AB , AC上分别取 BE, CD,使 BE=CD,连 BD、CE, 若BD、CE的中点 M、N的连线交 AB于P,交 AC于Q,求证: AP=AQ .(2)轴反射变换:把平面上图形中任一点都变到它关于定直:A线l的对称点的变换,叫做关于直线l的轴反射变换,直线 ,/ Z叫做反射轴,显然,在轴反射变换下,对应线段相等,两对应直线或者相交于反射轴上,或者与反射轴平行.通过轴r夕反射变换构成(或部分构成)轴对称图形是处理平面几何;问题的重要思想方法 .:士例题2 :设ABCD是一块正方形纸板,用平行于BC

6、的直线PQ和RS将之等分为三个矩形,折叠纸板,使点C落到AB上C点处,S点落在PQ上的S点处,且BC= 1 , 试求AC的长.(3)旋转变换:将平面上图形中每一点都绕一个定点O按/ 定方向(逆时针或顺时针)转动定角a的变换,叫做旋转变夕4看内?换,的点o叫做旋转中心,日叫做转幅或旋转角,易知,r夕在旋转变换下,两对应线段相等,两对应直线的交角等于;转幅,特别是在转幅为好的旋转变换下,两对应线段垂直:士 且相等.对于已知条件中含有正方形或等腰三角形或其他特殊图形问题, 变换来处理.往往可运用旋转例题3 :如图, ABC和 ADE是两个不全等的等腰直角三角形( ACAE ),现固工ABC而将 AD

7、E绕A在平面上旋转,试证:不论ADE旋转到什么位置,线段EC上必存在一点 M ,使 BDM 为腰直角三角形 .初中数学竞赛第二轮专题复习(3)几何姓名:参量法、二角法对于某些平面几何问题,倘若能将其看做代数问题的实际应用或转化为代数问题来处理,则既不失几何证明或求解的优美,又能为我们提供了更为灵活、广阔的求解 途径。通过代数概念,应用代数知识,借助参数、三角、坐标、向量等代数工具,将 几何问题转化为代数运算,从而解决平面几何问题,这种方法称之为代数法1.1参量法、三角法:剖析众多的数学间题,尤其是综合性较强的数学题,常因条件 之间的关联比较隐蔽、松散而表现得错综复杂,这时,我们如能仔细分析比较

8、题设条 件之间或条件与结论之间的异同点,以及潜存着的数量关系或位置关系上的特殊联系,抓住其中的共性量,将其作为承上启下。左右逢源的参(媒介)量,围绕它来展开变换、推证和运算而最后又消去它,这样常能方便地认清解题途径,恰当而适时地将 各条件纳人解题过程,并运用各有关条件和定理、性质,灵活地获得所需的结论。我 们把这种引人量求解数学间题的方法称之为参量法,参量法是一种代数法求解平面几何问题的参量法,常引人线段、比值、角度等作为参量。特别应当注 意到引入角度参量后,运用三角知识,进行三角运算以及运用正弦定理、余弦定理等 来沟通几何与三角的关系而求解平面几何间题的方法又称之为三角法(1)线段参量:线段

9、是几何图形的基本元素之一,它对几何图形的位置、形状、大小等,起着十分明显的作用.在解决几何问题时,选取一条或几条线段,用一个或几个 字母表示它们,以便于结合代数知识对线段进行必要的运算或由线段表达式的变形来沟通已知与可知,未知与需知以及它们之间的联系例题1 :已知 ABC 的底边 BC=2 ,高 AD=1 ,在BC上任 取一点 M,过M作MN AC ,交AB于N,作MP/ AB 交 AC于P,试求 M点在何处时, MNP的面积最大 ?(2)线段比参量:例题2 :如图,在四边形 ABCD 中, ABD、 BCD、 ABC 的面积比是 3:4:1 ,点 M、N分别在 AC、CD上, 且满足AM :

10、 AC =CN :CD ,若B、M、N三点共线,求 证:M、N分别是AC、CD的中点.(3)角参量:例题3:如图,设 A1、A2是 ABC的BC边上的两点, 若 NBAA1 =/CAA2 ,求证:.姻?=股1 BA2AC2 CA1 CA2解三角形、基础知识在本章中约定用 A, B, C分别表示 ABC的三个内角,a, b, c分别表示它们所对的各边长,p=01W为半周长。2一、一 a b c1.正弦定理: =2R (R为4ABC外接圆半径)。sin A sin B sinC1 11推论 1: ABC 的面积为 SoBc= absinC = bcsin A =casin B.2 22推论 2:在

11、 ABC 中,有 bcosC+ccosB=a.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S*BC = 1absinC ;再证推论2,因为B+C=冗-A, 2所以 sin(B+C)=sinA ,即 sinBcosC+cosBsinC=sinA ,两边同乘以 2R 得 bcosC+ccosB=a; 2.余.2222 2 2b c -a,下面用余弦定理证明几个常用的结论。2bc(1)斯特瓦特定理:在4ABC 中,D是BC边上任意一点,BD=p , DC=q ,则2 b2 p c2qAD =p q【证明】一 pq.因为 c2

12、=AB2=AD 2+BD2-2AD所以 c2=AD 2+p2-2AD pcosADB. 同理 b2=AD2+q2-2AD - qcos ADC , 因为.ADB+ . ADC=二,所以 cos / ADB+cos N ADC=0 ,所以qx+px得 BDcosZADB ,qc2+pb2=(p+q)AD 2+pq(p+q),即 AL)=,22b p c q一 pq.注:在(1)式中,若p=q,则为中线长公式(2 )海伦公式:因为SjBC2b2c2sin 2A= b2c2 (1-cos 2A)=1 b2c244222 2(b +c -a )/ / 24b c=(b+c) 2-a2a 2-(b-c)

13、 2=p(p-a)(p-b)(p-c).16这里所以a b cp=z.Sa abc = p(p -a)(p -b)(p -c).例题:1.面积法。例1 (共线关系的张角公式)如图所示,从O点发出的三条射线满足POQu,/QOR = P,另外 OP, OQ, OR 的长分别为 u, w, v,这里 a, & a + 6 (0, n ),弦th理:a =b +c -2bccosA = cos A =则P, Q, R的共线的充要条件是【证明】P, Q, R共线u SaPQR=0仁L r Qr1一一 1一._1C仁? uv sin ( a +3 4=uwsin abvwsin 3222S opr =

14、S OPQ . S ORQsin( : :)wsin : sin 一:+u v2.正弦定理的应用。例 2 如图所示,ABC 内有一点/ BPC- / BAC= / CPA- / CBA= / APB- / ACB。求证:AP - BC=BP - CA=CP - AB。【证明】过点P作PD_LBC, PE 1 AC , PF_LAB,垂足分别为 D,C,E; P , E,A, F; P , D , B,F 三组四点 EDF= - PDE+ . PDF= - PCA+ . PBA= . BPC- . BAC / BPC+ / CPA+ / APB=360 0 可得 / BAC+ / CBA+ /

15、ACB=180 0。所以 N BPC- / BAC= N CPA-Z CBA= / APB- / ACB=60 0。巳F, 共圆 。由则 P, D,所以题设及所以/ EDF=600,同理/ DEF=600,所以 DEF是正三角形。所以 DE=EF=DF ,由正弦定理, CDsin / ACB=APsin / BAC=BPsin / ABC,两边同时乘以 ABC的外接圆直径 2R,得CP - BA=AP - BC=BP - AC,得证:例3 如图所示, ABC的各边分别与两圆。 0, OQ相切,直线GF与DE交于P,求 证:pa_bg【证明】延长PA交GD于M,因为0iG_LBC, O2D _L

16、 BC,所以只需证GM 01 A AF MD - AO2 - AEPAap af由正弦定理 一AP一 二 -AF ,sin(二-1) sin , sin(二-2)AE所以空AF另一方面,sin Z1 sin : .sin -2 sin ;GM PM MDsin 工 sin -1 sin :PMsin 一 2所以GMMDsin -2 sin-: = sin 1 sin :所以器AFAE,所以 PA/0iG,即PA _L BC,得证。3. 一个常用的代换:在 ABC中,记点A, B, C到内切圆的切线长分别为x, y, z,则a=y+z, b=z+x, c=x+y.例 4 在 ABC 中,求证:a2(b+c-a)+b 2(c+a-b)+c2(a+b-c) 3abc.【证明】令a=y+z, b=z+x, c=x+y ,则abc=(x+y)(y+z)(z+x)-8 . xy yz zx =8xyz=(b+c-a)(a+c-b)(a+b-c) =a2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)-2abc.所以 a2(b+c-a)+b2(c+a-b)+c2(a+b-c) 3abc.初中数学竞赛第二轮专题复习(3)几何证明的基本方法(2)第5页,共5页5、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1