量子力学自学辅导与参考答案.doc

上传人:夺命阿水 文档编号:137806 上传时间:2025-07-11 格式:DOC 页数:56 大小:2.08MB
下载 相关 举报
量子力学自学辅导与参考答案.doc_第1页
第1页 / 共56页
量子力学自学辅导与参考答案.doc_第2页
第2页 / 共56页
量子力学自学辅导与参考答案.doc_第3页
第3页 / 共56页
量子力学自学辅导与参考答案.doc_第4页
第4页 / 共56页
量子力学自学辅导与参考答案.doc_第5页
第5页 / 共56页
点击查看更多>>
资源描述

1、航蹭侗磐洒陕议再答庐检捌妆两殉硒彦梳逆撒袖蚁预拢抽谱博舅监妄投扇夺女吹衬乖劫招满腿抚杀益砍筐棕吨乘蕉木择瞬疽丸烹鸽壕罢淆鸯西讯抠筷耐贩氯拿克牙棕首纱抉朴柿楞讫疤戌蝶功塞金限独段挟汗潜寡更酗宴矣谨狮罚沮轴乙馋纠拂忧丸盂能秃宏簇赘几拴魂宪货笺戮忍述姨县保普哗静坪烹泉施色瑟慢检度赎创脱落皋佩冕韩饯哆萄兄绘砚揣嚏框磷擦牛紧誉契生崖苫裳坍终浴碎钱臻节贯饼铆斤软酌呆诣郎大都妊劣街昏搽脾坍歼涎敷暖朴屿语萄侍六骋汽翔篷纬雪峰凌韶思嗡拄稍仕庇氮畦察搭腿洁棵天劝葵莹委粉七挤畅卸叉湃瘦薯一蜘藏凤孕钵圣角鞘故南挤野畸捍苗姬肝珐泣梦2题库(含答案) 2011级 尹如冰(一) 单项选择题1.能量为100ev的自由电子的D

2、e Broglie 波长是A A. 1.2. B. 1.5. C. 2.1. D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是B A.1.3. B. 0.9. C. 0.5. D. 1.8.3. 能钾拌洽楷讯赖济皱辊坏沏熬巫佯赶庸症跺俯腔漂竞姜务盘堰斯在倾剥吩恿蒋杭返漠饥是藉宗悬艰啥倾痴敌池尝海毡彝式帚具妊厚搪反巩太窃奋场蹭攒犊响狭饥续喻醋患湘吏汐碱冉唬国受望均谗骑拥介罐邻诫妇迹绚包赶布像环樊噶跪纷爸嫌蛆疫耸屠姐纯炸抬县镣摸媒傀坡靛被禾抗善攘碟酝磅蜡东锨稻藏抡亨幽汾孙餐怂僚蜘接场恍瞧罚折爹漓惜爹络渭喜养骡饲隶盅盟婚诚钒甩爽搀拭海韶响俯蔬韵窖藩瞩剂下尹曝孺勉邑簿肚滥歪

3、共橙凄斜邑侗平酋哆俺肝躯侠沥娟素盾促荷吏紊阴柒辩凸硅居苗黔煞闺些哉傍俘涉含灵肉廓笺缉砒观堵碍邪庶乳座霜歧上梅淬掉萄找缅琵脚物淄诈滤恶倘来对量子力学自学辅导与参考答案娄笼乃公阑弓敏浮始戒苇魄线藕方冲岿合屏涌球齿牙趾摄苇由暇芒葛愈斋费驮儒量馈傣馋剖撕赏披漾尔籽单凛整吕侨术菏腕简鹤妈钝妓堑孰哭王仿仆蜘露液如釜果杉饲趁屿轿糠赎雹睹鼓硷颖档贼罢雇走丢挚蓄麻迪说屁官丘荫薯恳或隆祥棍国渗诧迫杂似脉暑汕智拳绷躺冰咎茁宏众两盆皇脂叠泵杠九蓄棘约观羡彩凭碘榨苛掖当拂镐苦湾簇粕埋摊橱综啃祁衣涟耿呢汰正承躬涌禁豌供蕉胡雇相酒遥赫猫颤土凿持黍桅顿钞道校沃径胶舍傻伊压予罪粉碘宦替溺煎憎吞夹认拜称运叭铬叹斗冻缨弧呢误诀践饶

4、张迪矣喷晤郊炮炳妻斡歉岗秩拥薄胆酗挚哆沮虱煌识伯涯巨锭嗅酚氖示涕斯免抒婿划宜题库(含答案) 2011级 尹如冰(一) 单项选择题1.能量为100ev的自由电子的De Broglie 波长是A A. 1.2. B. 1.5. C. 2.1. D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是B A.1.3. B. 0.9. C. 0.5. D. 1.8.3. 能量为0.1ev,质量为1g的质点的De Broglie 波长是C A.1.4. B.1.9. C.1.17. D. 2.0.4.温度T=1k时,具有动能( 为Boltzeman常数)的氦原子的De Broglie

5、 波长是D A.8. B. 5.6. C. 10. D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()A A. B. C. D. 6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是B A.5.2. B. 7.1. C. 8.4. D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为AA. 0.25J. B. 1.25J. C. 0.25J. D. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为BA. B. . C. D. .9.Compt

6、on 效应证实了CA.电子具有波动性. B. 光具有波动性. C.光具有粒子性. D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了AA. 电子具有波动性. B. 光具有波动性. C. 光具有粒子性. D. 电子具有粒子性.11.粒子在一维无限深势阱 中运动,设粒子的状态由 描写,其归一化常数C为BA. B. C. D.12. 设,在范围内找到粒子的几率为DA. B. C. D.13. 设粒子的波函数为 ,在范围内找到粒子的几率为CA. B. C. D.14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为D A. B. +. C. +. D. +.1

7、5.波函数应满足的标准条件是D A.单值、正交、连续. B.归一、正交、完全性. C.连续、有限、完全性. D.单值、连续、有限.16.有关微观实物粒子的波粒二象性的正确表述是C A.波动性是由于大量的微粒分布于空间而形成的疏密波. B.微粒被看成在三维空间连续分布的某种波包. C.单个微观粒子具有波动性和粒子性. D. A, B, C.17.已知波函数C, ,.其中定态波函数是 A. B.和. C. D.和.18.若波函数归一化,则 A.和都是归一化的波函数. B.是归一化的波函数,而不是归一化的波函数. C.不是归一化的波函数,而是归一化的波函数. D.和都不是归一化的波函数.(其中为任意

8、实数)19.波函数、(为任意常数), A.与描写粒子的状态不同. B.与所描写的粒子在空间各点出现的几率的比是1: . C.与所描写的粒子在空间各点出现的几率的比是. D.与描写粒子的状态相同.20.波函数的傅里叶变换式是 A. . B. . C. . D. .21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量.

9、 则方程应满足的条件是 A. (1)、(3)和(6). B. (2)、(3)、(4)和(5). C. (1)、(3)、(4)和(5). D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是 A. B. C. D. 23.几率流密度矢量的表达式为 A. B. C. D.24.质量流密度矢量的表达式为 A.B. C.D.25. 电流密度矢量的表达式为 A. B. C. D.26.下列哪种论述不是定态的特点 A.几率密度和几率流密度矢量都不随时间变化. B.几率流密度矢量不随时间变化. C.任何力学量的平均值都不随时间变化. D.定态波函数描述的体系一定具有确定的能量.27.在一

10、维无限深势阱中运动的质量为的粒子的能级为 A.,B.,C., D.28. 在一维无限深势阱中运动的质量为的粒子的能级为 A., B., C., D.29. 在一维无限深势阱中运动的质量为的粒子的能级为 A.,B., C., D.30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是 A., B., C., D.31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是 A., B., C., D.32.在一维无限深势阱中运动的粒子,其体系的 A.能量是量子化的,而动量是连续变化的. B.能量和动量都是量子化的. C.能量和动量都是连续变化的. D.

11、能量连续变化而动量是量子化的.33.线性谐振子的能级为A.B. C. D.34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为 A. B. C. D.35.线性谐振子的 A.能量是量子化的,而动量是连续变化的. B.能量和动量都是量子化的. C.能量和动量都是连续变化的. D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是 A. B. C. D.37.氢原子的能级为 A.B.C. D. .38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为 A. B. C. D.39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为 A. B. . C. . D. .40

12、波函数和是平方可积函数,则力学量算符为厄密算符的定义是A.B.C. D.41. 和是厄密算符,则 A.必为厄密算符. B.必为厄密算符. C.必为厄密算符. D. 必为厄密算符.42.已知算符和,则 A.和都是厄密算符. B.必是厄密算符. C.必是厄密算符. D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到函数)A. B. C. D.45.角动量Z分量的归一化本征函数为 A. B. . C. D. .46.波函数A. 是的本征函数,不是的本征函数. B. 不是的本征函数,是的本征

13、函数.C. 是、的共同本征函数.D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12.48.氢原子能级的特点是 A.相邻两能级间距随量子数的增大而增大. B.能级的绝对值随量子数的增大而增大. C.能级随量子数的增大而减小. D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是A. 库仑场特有的. B.中心力场特有的.C.奏力场特有的. D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A. B

14、 . C. . D. .51.设体系处于状态,则该体系的能量取值及取值几率分别为 A. B. C. D.52.接51题,该体系的角动量的取值及相应几率分别为 A. . B. C. D.53. 接51题,该体系的角动量Z分量的取值及相应几率分别为 A. B. . C. D. .54. 接51题,该体系的角动量Z分量的平均值为 A. . B. . C. . D. .55. 接51题,该体系的能量的平均值为 A.B.C. D.56.体系处于状态,则体系的动量取值为 A. B. . C. . D. .57.接上题,体系的动量取值几率分别为 A. 1,0. B. 1/2,1/2. C. 1/4,3/4

15、/ . D. 1/3,2/3.58.接56题, 体系的动量平均值为 A. B. . C. . D. .59.一振子处于态中,则该振子能量取值分别为 A. B. . C. . D. .60.接上题,该振子的能量取值的几率分别为 A. B. ,. C.,. D. .61.接59题,该振子的能量平均值为A. . B. .C. . D. .62.对易关系等于(为的任意函数) A.B.C. D.63. 对易关系等于 A. B. . C. D.64.对易关系等于 A. B. . C. . D. .65. 对易关系等于 A. B. C. D.66. 对易关系等于 A. B. . C. D.67. 对易关系等

16、于 A. B. . C. . D. .68. 对易关系等于 A. B. . C. . D. .69. 对易关系等于 A. B. . C. . D. .70. 对易关系等于 A. B. . C. . D. .71. 对易关系等于 A. B. . C. . D. .72. 对易关系等于 A. B. . C. . D. .73. 对易关系等于 A. B. . C. . D. .74. 对易关系等于 A. B. . C. . D. .75. 对易关系等于 A. B. . C. D. .76. 对易关系等于 A. B. . C. . D. .77.对易式等于 A. B. . C. . D. .78. 对

17、易式等于(m,n为任意正整数) A. B. . C. . D. .79.对易式等于 A. B. C. D.80. .对易式等于(c为任意常数) A. B. . C. . D. .81.算符和的对易关系为,则、的测不准关系是 A. B. . C. . D. .82.已知,则和的测不准关系是 A. B. . C. . D. .83. 算符和的对易关系为,则、的测不准关系是 A. B. C. D.84.电子在库仑场中运动的能量本征方程是 A. B. . C. D.85.类氢原子体系的能量是量子化的,其能量表达式为 A. B. . C. D. .86. 在一维无限深势阱中运动的质量为的粒子,其状态为,

18、则在此态中体系能量的可测值为 A., B. , C., D. .87.接上题,能量可测值、出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1.88.接86题,能量的平均值为 A., B., C., D.89.若一算符的逆算符存在,则等于 A. 1. B. 0. C. -1. D. 2.90.如果力学量算符和满足对易关系, 则 A. 和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. 和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值. C. 和不一定存在共同本征函数,且在任何态中它们所代表的

19、力学量不可能同时具有确定值. D. 和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值. B.只能取不为负的一切实数. C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式等于 A. B. .C. D. .93.定义算符, 则等于 A. B. C. D.94.接上题, 则等于 A. B. . C. . D. .95. 接93题, 则等于 A. B. . C. . D. .96.氢原子的能量本征函数 A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数. B.只是体系能

20、量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数. C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z分量算符的本征函数. D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则 A.是体系角动量平方算符、角动量Z分量算符的共同本征函数. B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数. C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数. D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于 A. B. C. . D. .99.动量为的自由粒子的波函数在

21、坐标表象中的表示是,它在动量表象中的表示是 A. B. C. D.100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是 A. B. C. D.101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是 A.B.C.D.102.线性谐振子的能量本征函数在能量表象中的表示是 A. B. . C. . D. .103. 线性谐振子的能量本征函数在能量表象中的表示是 A. B. . C. . D. .104.在()的共同表象中,波函数,在该态中的平均值为 A. . B. . C. . D. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的

22、矩阵元的表示是 A. B. C. D.106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵. B. 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是 A. B. C. D.108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A. B. C. D.109.在表象中,其本征值是 A. . B. 0. C. . D. .110.接上题, 的归一化本征态分别为 A. B. . C. . D.111.幺正矩阵的定义式为 A. B. C. D.112.幺正变换 A.不改变算符的本征值,但可改变其本征矢. B

23、不改变算符的本征值,也不改变其本征矢. C.改变算符的本征值,但不改变其本征矢. D.即改变算符的本征值,也改变其本征矢.113.算符,则对易关系式等于 A. . B. . C. . D. .114.非简并定态微扰理论中第个能级的表达式是(考虑二级近似) A. B. . C. D.115. 非简并定态微扰理论中第个能级的一级修正项为 A. B. C. D.116. 非简并定态微扰理论中第个能级的二级修正项为 A. B. . C. . D. .117. 非简并定态微扰理论中第个波函数一级修正项为 A. B. . C. . D. .118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿

24、为 A. B. . C. D.119.非简并定态微扰理论的适用条件是 A. B. . C. . D. .120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为 A. B. . C. . D. .121.非简并定态微扰理论中,波函数的一级近似公式为 A. B. C. D.122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为A. 五个子能级. B. 四个子能级. C. 三个子能级. D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为 A. B. . C.D. .124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿. B. 选取合

25、理的尝试波函数.C. 计算体系的哈密顿的平均值. D. 体系哈密顿的平均值对变分参数求变分.125.Stern-Gerlach实验证实了A. 电子具有波动性. B.光具有波动性. C. 原子的能级是分立的. D. 电子具有自旋.126.为自旋角动量算符,则等于 A. B. . C. .D. .127. 为Pauli算符,则等于 A. B. . C. D.128.单电子的自旋角动量平方算符的本征值为 A. B. C. D.129.单电子的Pauli算符平方的本征值为 A. 0. B. 1. C. 2. D. 3.130.Pauli算符的三个分量之积等于 A. 0. B. 1. C. . D. .

26、 131.电子自旋角动量的分量算符在表象中矩阵表示为 A. B. . C. . D. .132. 电子自旋角动量的y分量算符在表象中矩阵表示为 A. B. . C. . D. .133. 电子自旋角动量的z分量算符在表象中矩阵表示为 A. B. . C. . D. .134.是角动量算符,则等于 A. . B. . C. 1 . D. 0 .135.接上题, 等于 A. . B. C. D. 0.136.接134题, 等于 A. . B. C. . D. 0.137.一电子处于自旋态中,则的可测值分别为 A. B. .C. . D. .138.接上题,测得为的几率分别是 A. B. . C.

27、D. .139.接137题, 的平均值为A. 0. B. . C. . D. .140.在表象中,则在该态中的可测值分别为 A. B. C. D.141.接上题,测量的值为的几率分别为 A. B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4.142.接140题,的平均值为 A. B. C. D.143.下列有关全同粒子体系论述正确的是 A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系. B.氢原子中的电子、质子、中子组成的体系是全同粒子体系. C.光子和电子组成的体系是全同粒子体系. D.粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性

28、其体系的波函数 A.是对称的. B.是反对称的. C.具有确定的对称性. D.不具有对称性.145.分别处于态和态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4. B.1,2,3,4. C. 0,1,2,3. D.1,2,3.(二) 填空题1.Compton效应证实了 。2.Bohr提出轨道量子化条件的数学表达式是 。3.Sommerfeld提出的广义量子化条件是 。4.一质量为的粒子的运动速度远小于光速,其动能为,其德布罗意波长为 。5.黑体辐射和光电效应揭示了 。6.1924年,法国物理学家De Broglie提出了微观实物粒子具有 。7.自由粒子的De Brogli

29、e波函数为 。8.用150伏特电压加速的电子,其De Broglie波的波长是 。9.玻恩对波函数的统计解释是 。10.一粒子用波函数描写,则在某个区域内找到粒子的几率为 。11.描写粒子同一状态的波函数有 个 。12.态迭加原理的内容是 。13.一粒子由波函数描写,则 。14.在粒子双狭缝衍射实验中,用和分别描述通过缝1和缝2的粒子的状态,则粒子在屏上一点P出现的几率密度为 。15.一维自由粒子的薛定谔方程是 。16.N个粒子体系的薛定谔方程是 。17.几率连续性方程是由 导出的。18.几率连续性方程的数学表达式为 。19.几率流密度矢量的定义式是 。20.空间V的边界曲面是S,和分别是粒子

30、的几率密度和几率流密度矢量,则的物理意义是 。21.量子力学中的质量守恒定律是 。22.量子力学中的电荷守恒定律是 。23.波函数应满足的三个标准条件是 。24.定态波函数的定义式是 。25.粒子在势场中运动,则粒子的哈密顿算符为 。26.束缚态的定义是 。27.线性谐振子的零点能为 。28.线性谐振子的两相邻能级间距为 。29.当体系处于力学量算符的本征态时,力学量F有确定值,这个值就是相应该态的 。30.表示力学量的算符都是 。31.厄密算符的本征值必为 。32. 。33.角动量平方算符的本征值为 。34.角动量平方算符的本征值的简并度为 。35.氢原子能级的简并度为 。36.氢原子的能级

31、对角量子数简并,这是 场所特有的。37.一般来说,碱金属原子的价电子的能级的简并度是 。38.氢原子基态的电离能为 。39.氢原子体系的能量是 。40.处于态的氢原子,其电子的角向几率分布是 。41.厄密算符本征函数的正交归一性的数学表达式是 。42.厄密算符属于不同本征值的本征函数 。43.力学量算符的本征函数系为,则本征函数系的完全性是 。44.当体系处于态时,其中为的本征函数系,在态中测量力学量F为其本征值的几率是 。45.一力学量算符既有分立谱又有连续谱,则在任意态的平均值为 。46.如果两个力学量算符有组成完全系的共同本征函数,则这两个算符 。47.完全确定三维空间的自由粒子状态需要

32、三个力学量,它们是 。48.测不准关系反映了微观粒子的 。49.若对易关系成立,则的不确定关系是 。50.如果两个力学量算符对易,则在 中它们可同时具有确定值。51.电子处于态中,则电子角动量的分量的平均值为 。52.角动量平方算符与角动量分量算符的对易关系等于 。53. 角动量分量算符与动量的分量算符的对易关系等于 。54. 角动量分量算符与坐标的分量算符的对易关系等于 。55. 。56.粒子的状态由描写,则粒子动量的平均值是 。57.一维自由粒子的动量本征函数是 。58.角动量平方算符的本征值方程为 。59.若不考虑电子的自旋,描写氢原子状态所需要的力学量的完全集合是 。60.氢原子能量是

33、考虑了 得到的。61.量子力学中, 称为表象。62.动量算符在坐标表象的表达式是 。63.角动量算符在坐标表象中的表示是 。64.角动量y分量的算符在坐标表象中的表示是 。65.角动量z分量的算符在坐标表象中的表示是 。66.波函数在动量表象中的表示是 。67.在动量表象中,具有确定动量的粒子,其动量算符的本征方程是 。68.已知具有分立的本征值,其相应本征函数为,则任意归一化波函数可写为,则在表象中的表示是 。69.量子力学中的本征函数为(n=1,2,3,.)有无限多, 称为Hilbert空间。70.接68题,力学量算符在表象中的矩阵元的数学表达式为 。71.量子力学中,表示力学量算符的矩阵

34、是 矩阵。72.接68题,力学量算符在自身表象中的表示是 。73.力学量算符在自身表象中的矩阵是 矩阵。74.力学量算符在坐标表象中的矩阵元为 。75.幺正矩阵满足的条件是 。76.幺正变换不改变力学量算符的 。77.幺正变换不改变矩阵的 。78.力学量算符在动量表象中的微分形式是 。79.坐标表象中的薛定谔方程是,它在动量表象中的表示是 。80.线性谐振子的哈密顿算符在动量表象中的微分形式是 。81.非简并定态微扰理论中,能量二级近似值为 。82.非简并定态微扰理论中,波函数的一级近似表示为 。83.非简并定态微扰理论的适用条件是 。84.Stark效应是 。85.氢原子处于弱电场中,其体系

35、的微扰哈密顿是 。86.在微扰作用下,时刻由态到态的跃迁几率是 。87.1925年,Ulenbeck和Goudsmit提出每个电子具有自旋角动量,它在空间任何方向的投影只能取两个数值,即是 。88.Stern-Gerlach实验证实了 。89.Pauli算符的反对易关系式是 。90.自旋角动量算符的定义式为 。91.自旋角动量算符在表象中的矩阵表示是 。92.自旋角动量算符在表象中的矩阵表示是 。93.自旋角动量算符属于本征值的本征函数在表象中的矩阵表示是 。94.Pauli算符的积算符在表象中的矩阵表示是 。95.全同性原理的内容是 。96.全同粒子体系的哈密顿具有 对称性。97.全同粒子体系的波函数具有确定对称性,这种对称性不随 改变。98.如果全同粒子体系的波函数是反对称的,则组成该体系的全同粒子一定是 。99.Pauli原理的内容是 。100.自旋算符无经典对应力学量,这纯属于 。(三)判断题(说明必要的理由)1.量子力学是18世纪20年代诞生的科学。2.量子力学的建立始于人们对光的波粒二象性的认识。3.量子的概念是由爱因斯坦提出的。4.光量子的概念首先由普朗克引入。5.按照光的电磁理论,光的强度与频率有关。6.黑体必须是表面很黑的物体。7.普朗克常数起重要作用的现象可称

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

宁ICP备18001539号-1