第二章模型化.docx

上传人:scccc 文档编号:13975546 上传时间:2022-01-28 格式:DOCX 页数:14 大小:160.46KB
返回 下载 相关 举报
第二章模型化.docx_第1页
第1页 / 共14页
第二章模型化.docx_第2页
第2页 / 共14页
第二章模型化.docx_第3页
第3页 / 共14页
第二章模型化.docx_第4页
第4页 / 共14页
第二章模型化.docx_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《第二章模型化.docx》由会员分享,可在线阅读,更多相关《第二章模型化.docx(14页珍藏版)》请在三一文库上搜索。

1、第二章系统模型与模型化第一节概述一、模型及模型化的定义模型可以说是现实系统的替代物。模型应反映出系统的主要组成部分、各部分的相互作用,以及在运用条件下的因果作用及相互关系。模型是现实系统的理想化抽象或简洁表示, 它描绘了现实系统的某些主要特点,它是为了客观地研究系统而发展起来的。模型有三个特征:它是现实世界部分的抽象或模仿;它是由那些与分析的问题有关的因素构成;它表明了有关因素间的相互关系。模型是描述现实世界的一个抽象。在构造模型时,要兼顾到它的现实性和易处理性。考虑到现实性,模型必须包含现实系统中的主要因素。考虑到易处理性, 模型要采取一些理想化的办法,即去掉一些外在的影响并对一些过程作合理

2、的简化。二、模型化的本质、作用及地位模型化就是为描述系统的构成和行为,对实体系统的各种因素进行适当筛选后,用一定方式(数学、图象等)表达系统实体的方法。简言之就是构模的过程。1本质:利用模型与原型之间某方面的相似关系,在研究过程中用模型来代替原型,通过对于模型的研究得到关于原型的一些信息。这里的相似关系是指两事物不论其自身结构如何不同,其某些属性是相似的。2隹比:模型本身是人们对客体系统一定程度研究结果的表达。这种表达是简洁的、 形式化的。模型提供了脱离具体内容的逻辑演绎和计算的基础,这会导致对科学规律、 理论、原理的发现。利用模型可以进行“思想”试验。3地位:模型的本质决定了它的作用的局限性

3、。 它不能代替对客观系统内容的研究, 只 有在和对客体系统内容研究相配合时, 模型的作用才能充分发挥。模型是对客体的抽象,由 它得到的结果,必须再回到现实中去检验。系统模型(化)的作用与地位如图41所示。图41模型的作用与地位三、模型的分类一般说来,模型可按图 4-2所示进行分类。概念模型是通过人们的经验、知识和直觉形成的。符号模型用符号来代表系统的各种因素和它们间的相互关系。这种模型是抽象模型。 它通常采用图示或数学形式,一般分为结构模型和数学模型。类比模型和实际系统的作用相同。这种模型利用一组参数来表示实际系统的另一组参数。仿真模型是用计算机对系统进行仿真时所用的模型。形象模型是把现实的东

4、西的尺寸进行改变(如放大或缩小)后的表示。图4 2模型分类四、构造模型的一般原则1 .建立方框图建立方框图的目的是简化对系统内部相互作用的说明。用一个方框代表一个子系统。图4 3所示的工厂系统,就是用方框图表示的一个例子。图中将每个车间(子系统)用一个方框来表示。每个方框有自己的输入和输出。图43清楚表明了工厂系统的各个子系统的相互关系。图43工厂生产系统2 .考虑信息相关性模型中只应包括系统中与研究目的有关的那些信息。3 .考虑准确性建模时,对所收集的用以构模的信息应考虑其准确性。4 .考虑结集性建模时需要进一步考虑的因素是把一些个别的实体组成更大实体的程度。例如,在工厂系统中,图4 3所示

5、的描述形式能满足厂长的工作需要。但是,不能满足车间管理人员的 需要,因为车间管理人员是把车间的每个工段作为一个单独的实体。五、建模的基本步骤基本步骤如下:明确建模的目的和要求对系统进行一般语言描述弄清系统中的主要因素(变量)及其相互关系(结构关系和函数关系)确定模型的结构估计模型的参数实验研究必要修改六、模型化的基本方法1、分析方法分析解剖问题,深入研究客体系统内部细节(如结构形式、函数关系等), 利用逻辑演绎方法,从公理、定律导出系统模型。2、实验方法通过对于实验结果的观察、分析,利用逻辑归纳法导出系统模型。数理模型方法是典型代表。实验方法基本上包括三类模拟法统计数据分析试验分析。3、 综合

6、法既重视实验数据又承认理论价值,将实验数据与理论推导统一于建模之 中。实验数据与理论不可分。没有实验就建立不了理论。没理论指导难以得到有用的数据。在实际工作中本方法是最常用的方法。4、老手法(主要有 Delphi法)对于复杂的系统,特别是有人参与的系统,要利用以上方法建模是十分困难的。其原因就在于人们对于这样的系统认识不足,因此就必须采用Delphi等方法。通过专家们之间启发式地讨论、逐步完善对系统地认识,构造出模型来。这在社会系统规划、决策中是常用的方法。这种方法的本质在于集中了专家们对于系统的认识(包括直觉、印象等不肯定因素) 及经验。通过实验修正,往往可以得到较好的效果。5、辩证法其基本

7、的观点是:系统是一个对立统一体,是由矛盾的两方面构成的。矛盾双方相互转化与统一乃是真实情景。同时现象不一定是本质, 形式不是内容。因此必须构成两个相反的分析模型。相同数据可以通过两个模型来解释。这样关于未来的描述和预测是两个对立模型解释的辩证发展的结果。因此可以防止片面性,最终结果优于单方面的结果。第二节系统结构模型化技术一、系统结构模型化基础(一)结构分析的意义任何系统都是由两个以上有机联系、相互作用的要素所组成的, 具有特定功能与结构的整体。结构即组成系统诸要素之间相互关联的方式。结构分析是一个实现系统结构模型化并加以解释的过程。其具体内容包括:对系统目的-功能的认识;系统构成要素的选取;

8、 对要素间的联系及其层次关系的分析; 系统整体结构 的确定及其解释。系统结构模型化是结构分析的基本内容。结构分析是系统分析的重要内容,是系统优化分析、设计与管理的基础。(二)系统结构的基本表达方式1、系统结构的集合表达设系统由n(n 2)个要素(S1 , S2,,Sn)所组成,其集合为 S,则有: S=S1, S2,,Sn系统的诸多要素有机地联系在一起,并且一般都是以两个要素之间的二元关系为基础 的。所谓二元关系是根据系统的性质和研究的目的所约定的一种需要讨论的、存在于系统中的两个要素(Si、Sj)之间的关系Rij(简记为R)。通常有影响关系、因果关系、包含关系、 隶属关系以及各种可以比较的关

9、系(如大小、先后、轻重、优劣等)。二元关系是结构分析中 所要讨论的系统构成要素间的基本关系,一般有以下三种情形: Si与Sj间有某种二元关系 R,即SiRSj ;Si与Sj间无某种二元关系 R,即Si R Sj ;Si与Sj间的某种二元关系 R不明,即Si RSj。在通常情况下,二元关系具有传递性,即:若 SiRSj、SjRSk,则有SiRSk(Si、Sj、Sk 为系统的任意构成要素)。传递性二元关系反映两个要素的间接联系,可记作R (t为传递 次数),如何将 SiRSk记作SiR2Sk。有时,对系统的任意构成要素Si和Sj来说,既有SiRSj ,又有SjRSi ,这种相互关联的二元关系叫强连

10、接关系。具有强连接关系的各要素之间存在替换性。以系统要素集合S及二元关系的概念为基础, 为便于表达所有要素间的关联方式,我们把系统构成要素中满足其种二元关系R的要素Si、Sj的要素对(Si , Sj)的集合,称为S上的二元关系集合,记作 Rb,即有:Rb=(Si,Sj)|Si 、Sj C S,SiRSj,i、j=1,2,n且在一般情况下,(Si,Sj)和(Sj,Si)表示不同的要素对。这样, “要素Si和Sj之间是否具 有某种二元关系 R,也就等价于“要素对(Si,Sj)是否属于S上的二元关系集合 Rb”。例4 某系统由七个要素(S1、S2、S7)组成。经过两两判断认为:S2影响S1、S3影响

11、S4、S4影响SS S7影响S2、S4和S6相互影响。这样,该系统的基本结构可用要素集合 S和二元关系集合 Rb来表达,其中:S=S1,S2,S3,S4,S5,S6,S7Rb=(S2,S1),(S3,S4),(S4,S5),(S7,S2),(S4,S6),(S6,S4)2、系统结构的有向图表达6753421图4例4有向图R TS)1有向图(D)由节点和连接各节点的有向弧 (箭线)组成,可用来表达系统的结构。具体方 法是:用节点表示系统的各构成要素,用有向弧表示要素之间的二元关系。从节点i(Si)到j(Sj)的最小(少)的有向弧数称为 D中节点间通路长度(路长),也即要素Si与Sj间二元关 系的

12、传递次数。在有向图中,从某节点出发,沿着有向弧通过其它某些节点各一次可回到该 节点时,在D中形成回路。呈强连接关系的要素节点间具有双向回路。表达例4给出的系统要素及其二元关系的有向图如图4所示。其中S3到S5、S3到S6和S7到S1的路长均为2。另外,S4和S6间具有强连接关系,S4和S6相互至U达,在其间 形成双向回路。3、系统结构的矩阵表达(1)邻接矩阵邻接矩阵(A)是表示系统要素间基本二元关系或直接联系情况的方阵。若A=(aij)n x n,则其定义式为:1,RSj或(S,Sj) Rb(S具有某种二元关系)0, SRSj或(,) Rb(SiX没有某种二元关系)有了表达系统结构的集合(S,

13、Rb)或有向图(D),就可很容易地将 A写出,反之亦然。与 例4和图4对应的邻接矩阵如下:S1 S2 S3 S4 S5 S6 S7A=S1S2S3S4S5S6S70000000100000000010000000110000000000010000100000很明显,A中“1”的个数与例4中Rb所包含的要素对数目和图4中有向弧的条数相等,均为6。在邻接矩阵中,若有一列(如第j歹U)元素全为0,则Sj是系统的输入要素,如图 4中的S3和S7;若有一行(如第i彳T)元素全为0,则Si是系统的输出要素,如图 4中的S1 和S5。(2)可达矩阵若在要素Si和Sj间存在着某种传递性二元关系,或在有向图上

14、存在着由节点i至j的有向通路时,称 Si是可以到达Sj的,或者说Sj是Si可以到达的。所谓可达矩阵 (M), 就是表示系统要素之间任意次传递性二元关系或有向图上两个节点之间通过任意长的路径 可以到达情况的方阵。若 M=(mij)n Xn,且在无回路条件下的最大路长或传递次数为r,即有0wtwr,则可达矩阵的定义式为:1,SiRtSj (存在着i至j的路长最大为r的通路)mii一0,SiRtSj(不存在i至j的通路)当t=1时,表示基本的二元关系,M即为A;当t=0时,表示Si自身到达,或 SiRSi ,也称反射性二元关系;当 t R2时,表示传递性二元关系。矩阵A和M的元素均为“ 1”或“ 0

15、,是nx n阶01矩阵,且符合布尔代数的运算规 贝U,即:0+0=0,0+1=1,1+0=1,1+1=1,0 x 0=0,0 x 1=0,1 x 0=0,1 X1=1。通过对邻接矩阵 A 的 运算,可求出系统要素的可达矩阵M其计算公式为:M=(A+I)r(41)其中I为与A同阶次的单位矩阵(即其主对角线元素全为“1”,其余元素为“ 0”),反映要素自身到达;最大传递次数(路长)r根据下式确定:(A+I) w(A+I) 2w(A+I) 3 丰丰(A+I) r-1 w(A+I) r=(A+I) r+1=-=(A+I) n (42)以与例4和图4对应的邻接矩阵为例有:S1 S2 S3 S4 S5 S

16、6 S7S1S2S3A+I= S4S5S6S71000000110000100110000001110000010000010100100001其中主对角线上的“1”表示诸要素通过零步(自身)到达情况(单位矩阵I),其余“1”表示要素间通过一步(直接)到达情况(邻接矩阵A)。S1 S2 S3 S4 S5 S6 S7S11000000S21100000S30011 0(A+I) 2=A2+A+I= S40001110S50000100S6S7000110100001其中带圆圈的“ 1 ”表示要素间通过两步( 间接 ) 到达情况 ( 矩阵A2) 。按照前述布尔代数的运算规则,在原式(A+I) 2的

17、展开中利用了 人+人=人的关系。进一步计算发现:(A+I) 3=(A+I) 2由 (4 2) 式即有 r=2 。这样,根据(4 1) 式,与例 4 和图 4 对应的可达矩阵为:S1 S2 S3 S4 S5 S6 S72M=(A+I) 2=S1 1S2 1S3 0S4 0S5 0S6S7 01010000100000000001111001110001000111000001(3) 其它矩阵在邻接矩阵和可达矩阵的基础上, 还有其它表达系统结构并有助于实现系统结构模型化的矩阵形式,如缩减矩阵、骨架矩阵等。缩减矩阵根据强连接要素的可替换性, 在已有的可达矩阵M 中, 将具有强连接关系的一组要素看作一

18、个要素, 保留其中的某个代表要素, 删除掉其余要素及其在M 中的行和列, 即得到该可达矩阵M的缩减矩阵M。如原例可达矩阵的缩减矩阵为:S1 S2 S3 S4 S5 S7骨架矩阵S1S2S3M,= S4S5S7100110001000000110000000110110010001对于给定系统,A的可达矩阵M是唯一的,但实现某一可达矩阵 M的邻接矩阵A可以具 有多个。我们把实现某一可达矩阵 M具有最小二元关系个数(“1”元素最少)的邻接矩阵 叫M的最小实现二元关系矩阵,或称之为骨架矩阵,记作 A。系统结构的三种基本表达方式相互对应,各有特色。用集合来表达系统结构概念清楚, 在各种表达方式中处于基

19、础地位;有向图形式较为直观、 易于理解;矩阵形式便于通过逻辑运算,用数学方法对系统结构进行分析处理。以它们为基础和工具,通过采用各种技术,可实现复杂系统结构的模型化。(三)常用系统结构模型化技术常用的系统结构模型化技术有:关联树法、解释结构模型化技术、系统动力学结构模型 化技术等,其中解释结构模型化 (ISM)技术是最基本和最具特色的系统结构模型化技术。ISM技术是美国JN 沃菲尔德教授于1973年作为分析复杂的社会经济系统结构问题 的一种方法而开发的。其基本思想是:通过各种创造性技术,提取问题的构成要素,利用有向图、矩阵等工具和计算机技术, 对要素及其相互关系等信息进行处理,最后用文字加以解

20、释说明,明确问题的层次和整体结构,提高对问题的认识和理解程度。通过对可达矩阵的处理, 建立系统问题的递结构模型, 这是ISM技术的核心内容。 根据 问题规模和分析条件, 可在掌握基本原理及其规范方法的基础上, 采用多种手段、选择不同 方法来完成此项工作。二、建立递阶结构模型的规范方法建立反映系统问题要素间层次关系的递阶结构模型,可在可达矩阵M的基础上进行,且一般要经过区域划分、级位划分、骨架矩阵提取和多级递阶有向图绘制等四个阶段。这是建立递阶结构模型的基本方法。 现以例41所示问题为例说明。与图44对应的可达矩阵(其 中将Si简记为i)为:1 2 3 4 5 6 7123M= 45671000

21、001100000011110001110000100001111100001、区域划分区域划分即将系统的构成要素集合0000001S,分割成关于给定二元关系过程。为此,需要首先以可达矩阵M为基础,划分与要素Si(i=1,2,R的相互独立的区域的,n)相关联的系统要素的类型,并找出在整个系统(所有要素集合S)中有明显特征的要素。有关要素集合的定义如下:(1)可达集R(Si)系统要素Si的可达集是在可达矩阵或有向图中由Si可到达的诸要素所构成的集合,记为 R(Si)。其定义式为:R(Si)=Sj|Sj esm=1,j=1,2,n i=1,2,n如,在给出的可达矩阵中有:R(S1)=S1, R(S

22、2)=S1,S2, R(S3)=S3,S4,S5,S6,R(S4)=R(S6)=S4,S5,S6, R(S5)=S5, R(S7)=S1,S2,S7(2)先行集A(Si)系统要素Si的先行集是在可达矩阵或有向图中可到达 Si的诸系统要素所构成的集合,记为 A(Si)。其定义式为:A(Si)=Sj|Sj C S,mji=1,j=1,2,n i=1,2,n如,在给出的可达矩阵中有:A(S1)=S1,S2,S7, A(S2)=(S2,S7), A(S3)=S3,A(S4)=A(S6)=S3,S4,S6, A(S5)=S3,S4,S5,S6, A(S7)=S7。(3)共同集C(Si)系统要素Si的共同

23、集是Si在可达集和先行集的共同部分,即交集,记为 C(Si)。其定 义式为:C(Si)=Sj|Sj C Sm =1, mij =1,j=1,2,n i=1,2,,n如:C(S1)=S1, C(S2)=S2, C(S3)=S3, C(S4)=C(S6)=S4,S6,C(S5)=S5, C(S7)=S7。系统要素Si的可达集R(Si)、先行集A(Si)、共同集C(Si)之间的关系如图26所示。图26元素Si的可达集、先行集、共同集关系示意图(4)起始集B(S)和终止集E(S)系统要素集合S的起始集是在S中只影响(到达)其他要素而不受其他要素影响(不被其他要素到达)的要素所构成的集合,记为 B(S)

24、。B(S)中的要素在有向图中只有箭线流出,而 无箭线流入,是系统的输入要素。其定义式为:B(S)=Si|Si S,C(Si)=A(Si),i=1,2,n。如,在与图44所对应的可达矩阵中,B(S)=S3,S7。当Si为S的起始集(终止集)要素时,相当于使图4-6中的阴影部分C(Si)覆盖到了整 个 A(Si)(R(Si)区域。这样,要区分系统要素集合 S是否可分割,只要研究系统起始集B(S)中的要素及其可达集要素(或系统终止集 E(S)中的要素及其先行集要素)能否分割(是否相对独立)就行了。 利用起始集B(S)判断区域能否划分的规则如下:在B(S)中任取两个要素 bu、bv:如果R(bu) n

25、 R(bv)金(为空集),则bu、bv及R(bu)、R(bv)中的要素属同一区域。 若对所有u和v均有此结果(均不为空集),则区域不可分;如果R(bu) n R(bv)=,则bu、bv及R(bu)、R(bv)中的要素不属同一区域,系统要 素集合S至少可被划分为两个相对独立的区域。利用终止集E(S)来判断区域能否划分,只要判定“ A(eu) AA(ev) ”(eu、ev为E(S)中 的任两个要素)是否为空集即可。区域划分的结果可记为:n (S)=P1,P2,Pk,Pm(其中Pk为第k个相对独立区域的 要素集合)。经过区域划分后的可达矩阵为块对角矩阵(记作M(P)。为对给出的与图4所对应的可达矩阵

26、进行区域划分,可列出任一要素Si(简记作i,i=1,2,,7)的可达集R(Si)、先行集A(Si)和共同集C(Si),并据此写出系统要素集合 的起始集B(S),如表21所示。表21可达集、先行集、共同集和起始集例表SiR(Si)A(Si)C(Si)B(S)111,2,7121,22,7233,4,5,633344,5,63,4,64,6553,4,5,6564,5,63,4,64,671,2,7777因 B(S尸S3,S7,且有 R(S3) n R(S7)=S3,S4,S5,S6 AS1,S2,S7=,所以,S3及 S4、SS S6和S7及S1、S2分属两个相对独立的区域,即有:n (S-P1

27、,P2=S3,S4,S5,S6,S1,S2,S7这时的可达矩阵M变为如下的块对角矩阵: 3 4 5 6 1 2 701111;40111iP1 00050010?M(P尸匕 0 1 1 1 ; mi hitbtii murmi iis!urmiiirreTi110 0P2 T 201 1 071112、级位划分区域内的级位划分,即确定某区域内各要素所处层次地位的过程。这是建立多级递阶结构模型的关键工作。设P是由区域划分得到的某区域要素集合,若用 L1、L2、Lk表示从高到低的各级 要素集合(其中1为最大级位数),则级位划分的结果可写成:n(P)=L1,L2,,Lk某系统要素集合的最高级要素即该

28、系统的终止集要素。级位划分的基本作法是:找出整个系统要素集合的最高级要素(终止集要素)后,可将它们去掉,再求剩余要素集合(形成部分图)的最高级要素,依次类推,直到确定出最低一级要 素集合(即Ll)。为此,令L0=(最高级要素集合为L1,没有零级要素),则有:L1=Si|Si 6 P-L0,C0(Si尸R0(Si),i=1,2,nL2=Si|Si P-L0-L1,C1(Si尸R1(Si),i nLk=Si|Si C P-L0-L1-Lk-1,Ck-1(Si尸Rk-1(Si),iD(A)(块对角)(区域块三角)(区域下三角)图28递阶结构模型建立过程示意图三、建立递阶结构模型的实用方法按照规范方法

29、所显示的递阶结构模型化基本原理,在系统结构并不十分复杂的情况下, 建模工作可采用较为简便的方法来完成。其主要过程如下:1、判定二元关系,建立可达矩阵及其缩减矩阵在问题设定之后,首先由分析小组或分析人员个人寻找与问题有某种关系的要素,经集中后,根据要素个数绘制如图 29所示的方格图,并在每行右端依次注上各要素的名称。 在此基础上,通过两两比较,直观确定各要素之间的二元关系,并在两要素交汇处的方格内用符号V、A和X加以标识。其中 V表示方格图中的行(或上位)要素直接影响到列(或下位) 要素,A表示列要素对行要素有直接影响,X表示行列两要素相互影响(称之为强连接关系)。进而根据要素间二元关系的传递性

30、,逻辑推断出要素间各次递推的二元关系,并用加括号的标识符表示。最后,再加入反映自身到达关系的单位矩阵,建立起系统要素的可达矩阵。图2 9判定要素间关系用方格图举例 现根据例21给出的系统结构分析问题,绘制出帮助建立可达矩阵的方格图,如图123M= 4567A=12345610 10 0 00 10 10 010 10 100 10 10 129所不。根据图29,并加入单位矩阵,可写出如下可达矩阵(其中将Si简记为i)100000011000000 0 1111000011100000100000111011000012、对可达矩阵的缩减矩阵进行层次化处理根据要素级位划分的思想,在具有强连接关系

31、的要素(S4与S6)中,去除S6(即去除可达矩阵中“ 6”所对应的行和列),可得到缩减(可达)矩B$ M。在M中按每行“1”元素的多少,由少到多顺次排列,调整 M的行和列,得到 Ml;最后在ML中,从左上角到右下角,依次分解出最大阶数的单位矩阵,并加注方框。每个方框表示一个层次。 对原例可达矩阵的缩减矩阵进行层次化处理的结果为:1 5 2 4 7 3可见,该例中的要素分为三个层次。S1和S5属第一层次,S2、S4及S6属第二层次,S7、S3为第三层次。事实上,只要掌握了要素级位划分的基本原理,就可以归结出各种对可达矩阵或其缩减矩阵进行层次化处理的简易方法。3、根据ML绘制多级递阶有向图首先把所有要素按已有层次排列,然后按照Ml中两方框(单位矩阵)交汇处的“ 1”元素,画出表征不同层次要素间直接联系的有向弧,形成多级递阶有向图。例如,根据上例中第二层到第一层间的S2RS1 S4RS5和第三层到第二层间的 S7RS2S3RS4并补充进被缩约的 S6,即可绘制出与图 27相同的多级递阶有向图。最后,可根据各要素的实际意义,将多级递阶有向图直接转化为解释结构模型。这种建立递阶结构模型的方法以规范方法为基础,简便、实用,有助于人们实现对多要素问题认识与分析的层次化、条理化和系统化。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1