最新椭圆知识点归纳总结和经典例题优秀名师资料.doc

上传人:小红帽 文档编号:1410576 上传时间:2018-12-16 格式:DOC 页数:13 大小:2.20MB
返回 下载 相关 举报
最新椭圆知识点归纳总结和经典例题优秀名师资料.doc_第1页
第1页 / 共13页
最新椭圆知识点归纳总结和经典例题优秀名师资料.doc_第2页
第2页 / 共13页
最新椭圆知识点归纳总结和经典例题优秀名师资料.doc_第3页
第3页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《最新椭圆知识点归纳总结和经典例题优秀名师资料.doc》由会员分享,可在线阅读,更多相关《最新椭圆知识点归纳总结和经典例题优秀名师资料.doc(13页珍藏版)》请在三一文库上搜索。

1、椭圆的基本知识 1椭圆的定义:把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c) . 2.椭圆的标准方程:(0) (0)焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m0,n0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法解: (相关点法)设点M(x, y), 点P(x0, y0), 则xx0, y 得x0x, y02y.x02y024, 得 x2(2y)24, 即所以点M的轨迹是一个椭圆. 4.范围. x2a2,y2b2,|x|a,|y|b椭

2、圆位于直线xa和yb围成的矩形里5.椭圆的对称性椭圆是关于y轴、x轴、原点都是对称的坐标轴是椭圆的对称轴原点是椭圆的对称中心椭圆的对称中心叫做椭圆的中心6.顶点 只须令x0,得yb,点B1(0,b)、B2(0, b)是椭圆和y轴的两个交点;令y0,得xa,点A1(a,0)、A2(a,0)是椭圆和x轴的两个交点椭圆有四个顶点:A1(a, 0)、A2(a, 0)、B1(0, b)、B2(0, b)椭圆和它的对称轴的四个交点叫椭圆的顶点线段A1A2、B1B2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a叫做椭圆的长半轴长b叫做椭圆的短半轴长|B1F1|B1F2|B2F1|B2F

3、2|a在RtOB2F2中,|OF2|2|B2F2|2|OB2|2,即c2a2b27.椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率对于第一类性质,只要的有关性质中横坐标x和纵坐标y互换,就可以得出的有关性质。总结如下:几点说明:(1)长轴:线段,长为;短轴:线段,长为;焦点在长轴上。(2)对于离心率e,因为ac0,所以0e1,离心率反映了椭圆的扁平程度。由于,所以越趋近于1,越趋近于,椭圆越扁平;越趋近于0,越趋近于,椭圆越圆。(3)观察下图,所以,所以椭圆的离心率e = cosOF2B2

4、8.直线与椭圆: 直线:(、不同时为0) 椭圆:那么如何来判断直线和椭圆的位置关系呢?将两方程联立得方程组,通过方程组的解的个数来判断直线和椭圆交点的情况。方法如下: 消去得到关于的一元二次方程,化简后形式如下, (1)当时,方程组有两组解,故直线与椭圆有两个交点; (2)当时,方程组有一解,直线与椭圆有一个公共点(相切); (3)当时,方程组无解,直线和椭圆没有公共点。 注:当直线与椭圆有两个公共点时,设其坐标为,那么线段的长度(即弦长)为,设直线的斜率为,可得:,然后我们可通过求出方程的根或用韦达定理求出。椭圆典型例题例1 已知椭圆的一个焦点为(0,2)求的值分析:把椭圆的方程化为标准方程

5、,由,根据关系可求出的值解:方程变形为因为焦点在轴上,所以,解得又,所以,适合故例2 已知椭圆的中心在原点,且经过点,求椭圆的标准方程分析:因椭圆的中心在原点,故其标准方程有两种情况根据题设条件,运用待定系数法,求出参数和(或和)的值,即可求得椭圆的标准方程解:当焦点在轴上时,设其方程为由椭圆过点,知又,代入得,故椭圆的方程为当焦点在轴上时,设其方程为由椭圆过点,知又,联立解得,故椭圆的方程为例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹分析:(1)由已知可得,再利用椭圆定义求解(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程解: (1)以所在的直线为轴,中点为

6、原点建立直角坐标系设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点因,有,故其方程为(2)设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程解:设两焦点为、,且,从椭圆定义知即从知垂直焦点所在的对称轴,所以在中,可求出,从而所求椭圆方程为或例5 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由

7、余弦定理知: 由椭圆定义知: ,则得 故 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法例7 已知椭圆(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线

8、、斜率满足,求线段中点的轨迹方程 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则得由题意知,则上式两端同除以,有,将代入得(1)将,代入,得,故所求直线方程为: 将代入椭圆方程得,符合题意,为所求(2)将代入得所求轨迹方程为: (椭圆内部分)(3)将代入得所求轨迹方程为: (椭圆内部分)(4)由得 : , , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决例8 已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程解:

9、(1)把直线方程代入椭圆方程得 ,即,解得(2)设直线与椭圆的两个交点的横坐标为,由(1)得,根据弦长公式得 :解得方程为说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程例9 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用

10、对称就可解决解:如图所示,椭圆的焦点为,点关于直线的对称点的坐标为(9,6),直线的方程为解方程组得交点的坐标为(5,4)此时最小所求椭圆的长轴:,又,因此,所求椭圆的方程为例10 已知方程表示椭圆,求的取值范围解:由得,且满足条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例11 已知表示焦点在轴上的椭圆,求的取值范围分析:依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值范围解:方程可化为因为焦点在轴上,所以因此且从而说明:(1)由椭圆的标准方程知,这是容易忽视的地方(2)由焦点在轴上,

11、知, (3)求的取值范围时,应注意题目中的条件例12求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为(,),且不必去考虑焦点在哪个坐标轴上,直接可求出方程解:设所求椭圆方程为(,)由和两点在椭圆上可得即所以,故所求的椭圆方程为例13 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长分析:可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求解:(法1)利用直线与椭圆相交的弦长公式求解因为,所以因为焦点在轴上,所以椭圆方程为,左焦

12、点,从而直线方程为由直线方程与椭圆方程联立得:设,为方程两根,所以, 从而 (法2)利用椭圆的定义及余弦定理求解由题意可知椭圆方程为,设,则,在中,即;所以同理在中,用余弦定理得,所以 (法3)利用焦半径求解先根据直线与椭圆联立的方程求出方程的两根,它们分别是,的横坐标再根据焦半径,从而求出例14椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A4B2 C8 D解:如图所示,设椭圆的另一个焦点为,由椭圆第一定义得,所以,又因为为的中位线,所以,故答案为A说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于)的点的轨迹叫做椭圆(2)椭圆上的点必定适合椭圆的这一定义,即,利用这

13、个等式可以解决椭圆上的点与焦点的有关距离例15 已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上利用上述条件建立的不等式即可求得的取值范围解:(法1)设椭圆上,两点关于直线对称,直线与交于点的斜率,设直线的方程为由方程组消去得。于是,即点的坐标为点在直线上,解得将式代入式得,是椭圆上的两点,解得(法2)同解法1得出,即点坐标为,为椭圆上的两点,点在椭圆的内部,解得(法3)设,是椭圆上关于对称的两点,直线与的交点的坐标为,在椭圆上,两式相减得,即又直线,即。又点在直线上,。由,得点的坐标

14、为以下同解法2.说明:涉及椭圆上两点,关于直线恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:(1)利用直线与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式,建立参数方程(2)利用弦的中点在椭圆内部,满足,将,利用参数表示,建立参数不等式2、第三单元“生活中的数”。通过数铅笔等活动,经历从具体情境中抽象出数的模型的过程,会数,会读,会写100以内的数,在具体情境中把握数的相对大小关系,能够运用数进行表达和交流,体会数与日常生活的密切联系。例17 在面积为1的中,建立适当的坐标系,求出以、为焦点且过点的椭圆方程1.正切:3、学习并掌握100以

15、内加减法(包括不进位、不退位与进位、退位)计算方法,并能正确计算;能根据具体问题,估计运算的结果;初步学会应用加减法解决生活中简单问题,感受加减法与日常生活的密切联系。2、100以内的进位加法和退位减法。解:以的中点为原点,所在直线为轴建立直角坐标系,设则即得3、学习并掌握100以内加减法(包括不进位、不退位与进位、退位)计算方法,并能正确计算;能根据具体问题,估计运算的结果;初步学会应用加减法解决生活中简单问题,感受加减法与日常生活的密切联系。所求椭圆方程为面对新的社会要求,教师与学生应首先走了社会的前边,因此我们应该以新课标要求为指挥棒,采用所有可行的措施,尽量体现以人为本,培养学生创新,

16、开放的思维方式。另一方面注意处理好内容与思想的衔接,内容要在学生上学期的水平之上发展并为以后学习打下基础,思想上注意新思维与我国传统的教学思想结合例18 已知是直线被椭圆所截得的线段的中点,求直线的方程B、当a0时166.116.17期末总复习分析:本题考查直线与椭圆的位置关系问题通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元二次方程,再由根与系数的关系,直接求出,(或,)的值代入计算即得3、通过教科书里了解更多的有关数学的知识,体会数学是人类在长期生活和劳动中逐渐形成的方法、理论,是人类文明的结晶,体会数学与人类历史的发展是息息相关。8.解直角三角形:在直角三角形中,除直角外,

17、一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形(须知一条边)。本册教材在第五单元之后安排了一个大的实践活动,即“分扣子”和“填数游戏”。旨在综合运用所学的知识,从根据事物的非本质的、表面的特征把事物进行分类,发展到根据客观事物抽象、本质的特征进行不同方式的分类,促进孩子逻辑思维能力的发展。同时,安排学生填数游戏,旨在对孩子的口算能力、逻辑思维能力和观察能力的训练,感受数学的乐趣!并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的顶点坐标:(,)解:方法一:设所求直线方程为代入椭圆方程,整理得 5、多

18、一份关心、帮助,努力发现他们的闪光点,多鼓励、表扬他们,使其体验成功、努力学习。 设直线与椭圆的交点为,则、是的两根,为中点,所求直线方程为2、100以内的进位加法和退位减法。(4)二次函数的图象:是以直线为对称轴,顶点坐标为(,)的抛物线。(开口方向和大小由a来决定)(一)数与代数方法二:设直线与椭圆交点,为中点,3、思想教育,转化观念端正学习态度。(5)直角三角形的内切圆半径又,在椭圆上,两式相减得,初中阶段,我们只学习直角三角形中,A是锐角的正切;(1)定义:顶点都在同一圆上的正多边形叫做圆内接正多边形,这个圆叫做该正多边形的外接圆.即直线方程为方法三:设所求直线与椭圆的一个交点为,另一个交点、在椭圆上,。 从而,在方程的图形上,而过、的直线只有一条,直线方程为说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法若已知焦点是、的椭圆截直线所得弦中点的横坐标是4,则如何求椭圆方程?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1