掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc

上传人:doc321 文档编号:14955963 上传时间:2022-02-26 格式:DOC 页数:38 大小:71.41KB
返回 下载 相关 举报
掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc_第1页
第1页 / 共38页
掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc_第2页
第2页 / 共38页
掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc_第3页
第3页 / 共38页
掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc_第4页
第4页 / 共38页
掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc》由会员分享,可在线阅读,更多相关《掺杂和缺陷对碳纳米管电子结构和光学性质的影响.doc(38页珍藏版)》请在三一文库上搜索。

1、凝聚态物理专业毕业论文 精品论文 掺杂和缺陷对碳纳米管电子结构和光学性质的影响关键词:碳纳米管 纳米材料 复合掺杂体 结构缺陷 光学性质摘要:碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂

2、体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也

3、进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。正文内容 碳纳米

4、管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wa

5、les缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响

6、,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研

7、究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同

8、位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4

9、.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质

10、的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光

11、学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示

12、了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,

13、获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,

14、无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,

15、自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合

16、情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低

17、能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特

18、性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。

19、SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳

20、纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第

21、一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺

22、陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的

23、碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于

24、单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼

25、、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现

26、以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳

27、管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属

28、性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。碳纳米管作为一种新型的准一维纳米材料,自从1991年被Iijima发现以后,由于其独特的结构和电子特性,迅速成为物理、化学、材料学及生物领域的研究热点。已有很多人研究碳纳米管的结构缺陷及其对输运特性的影响,但是对碳纳米管中各种缺

29、陷共存的复合缺陷的电子结构和光学性质研究不多,因此研究这种复合缺陷对碳纳米管电子结构和光学性质的影响尤为重要。 1.运用基于第一性原理的密度泛函理论,对单壁碳纳米管中存在的取代掺杂、Stone-Wales缺陷、硼氮共掺杂等复合掺杂体系进行了系统的研究,获得了一些有意义的结论,这对基于单壁碳纳米管的光电器件的实际制备和开发具有理论指导意义。 2.对单壁碳纳米管中Stone-Wales缺陷和氮原子掺杂共存的复合情况进行了计算模拟。对于半导体碳管,SW缺陷使得能带的简并度下降,而氮掺杂的复合体系显著的改变了半导体碳纳米管的电子结构,不同位置的氮掺杂,电子结构明显不同。SW缺陷和氮掺杂复合缺陷减弱了体

30、系的光吸收和反射性能,在低能区发生红移,并出现杂质特征峰。此外,氮原子和空位形成的复合缺陷对光学性质也有显著的影响,这种复合缺陷使得吸收、反射峰增多并向远红外方向移动。 3.对不同手性的金属性碳管硼、氮共掺杂的电子结构和光学性质也进行了研究。结果表明,无论手性如何,金属性的碳纳米管硼、氮共掺杂后,生成能隙,变成半导体性的碳纳米管。这种复合缺陷对碳纳米管的光学性质也有明显的影响,硼、氮共掺杂后吸收减弱,且在低能区发生红移。并且,对于手性金属性碳纳米管,光学各向异性特征十分明显,在E=10.25eV的吸收峰强度远远大于其他吸收峰。 4.以硼掺杂为例,研究了硼掺杂对碳纳米管吸附甲醛分子的电子结构和光

31、学性能的影响,结果显示,掺入硼原子会引起碳纳米管几何和电子结构发生改变,电荷转移更加显著,显示了对甲醛分子的敏感性,而硼掺杂的碳管吸附甲醛分子后,吸收峰和反射峰增多,峰值减小,在能量为17.2eV处均出现一特征峰。特别提醒:正文内容由PDF文件转码生成,如您电脑未有相应转换码,则无法显示正文内容,请您下载相应软件,下载地址为 。如还不能显示,可以联系我q q 1627550258 ,提供原格式文档。 垐垯櫃换烫梯葺铑?endstreamendobj2x滌?U閩AZ箾FTP鈦X飼?狛P?燚?琯嫼b?袍*甒?颙嫯?4)=r宵?i?j彺帖B3锝檡骹笪yLrQ#?0鯖l壛枒l壛枒l壛枒l壛枒l壛枒l壛

32、枒l壛枒l壛枒l壛枒l壛枒l壛枒l壛渓?擗#?#綫G刿#K芿$?7.耟?Wa癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb皗E|?pDb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$Fb癳$F?責鯻0橔C,f薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵秾腵薍秾腵%?秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍G?螪t俐猻覎?烰:X=勢)趯飥?媂s劂/x?矓w豒庘q?唙?鄰爖媧A|Q趗擓蒚?緱鳝嗷P?笄nf(鱂匧叺9就菹$

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1