跨海大桥深水桩基础防船撞能力及安全评估研究.pdf.doc.doc

上传人:本田雅阁 文档编号:2036950 上传时间:2019-02-07 格式:DOC 页数:164 大小:10.97MB
返回 下载 相关 举报
跨海大桥深水桩基础防船撞能力及安全评估研究.pdf.doc.doc_第1页
第1页 / 共164页
跨海大桥深水桩基础防船撞能力及安全评估研究.pdf.doc.doc_第2页
第2页 / 共164页
跨海大桥深水桩基础防船撞能力及安全评估研究.pdf.doc.doc_第3页
第3页 / 共164页
亲,该文档总共164页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《跨海大桥深水桩基础防船撞能力及安全评估研究.pdf.doc.doc》由会员分享,可在线阅读,更多相关《跨海大桥深水桩基础防船撞能力及安全评估研究.pdf.doc.doc(164页珍藏版)》请在三一文库上搜索。

1、 分类号:TU410710-2010021072博士学位论文跨海大桥深水桩基础防船撞能力及安全评估研究李李维洲导师姓名职称申请学位级别论文提交日期学位授予单位冯忠居 教授博士学科专业名称岩土工程2014年 4月 28日 论文答辩日期 2014年 6月 21日长安大学 Research on The Ability of Deep Water PileFoudation of Cross Sea Bridge Against Ship Collisionand Its Safety AssessmentA Dissertation Submitted for the Degree of Doct

2、orCandidate:Li WeizhouSupervisor:Prof. Feng ZhongjuChangan University, Xian, China 摘 要近二十年来我国修建了近百座的跨江、跨海大桥,许多都是举世瞩目的超级工程,但船撞桥而引发重大人员伤亡、财产损失的事件时常发生,说明在通航水域桥梁的防撞设计和防撞措施上还存在不足。我国桥梁防撞研究起步晚,早期重视程度不够,防撞设计理论及计算多依赖国外的研究成果,这和我国桥梁总体建设水平极不相称。本文结合平潭海峡大桥工程,基于现场模拟试验、数值分析及理论分析的方法,研究跨海大桥深水桩基础的防船撞能力,在此基础上进行船撞桥风险概率的

3、安全评估,提出跨海大桥深水桩基础选用的防撞类型,及其防撞设施设计与施工关键技术。本文主要成果体现在:1. 结合平潭大桥开展船舶撞击桥梁基础现场模拟试验,验证船撞桥梁数值仿真分析所采用的计算参数准确性和数值仿真计算方法的合理性。现场模拟碰撞试验结果表明:桥墩在环境激励下的自振频率与有限元模拟计算得到的自振频率比较接近,振动现场测试的加速度或速度的数据曲线与数值模拟计算得到的数据曲线呈现出强烈的非线性,但二者曲线总体趋势一致。试验验证了防撞钢套箱以及船用钢材采用各向同性应变率相关的塑性模型中相关本构关系及相关的计算参数的合理性,为船桥碰撞有限元模拟提供了试验依据。2. 对船舶撞击桥梁桩基础进行数值

4、模拟计算,结果表明:船桥碰撞最不利计算工况是最低通航水位下正撞时的工况,此时桩基础的桩基弯矩最大。与无防撞设施的桩基础相比,有防撞设施的桩基础受船撞后最大撞击力、承台水平位移及桩基最大弯矩、最大拉应力明显减小,且船舶撞击深度亦明显减小。3. 建立了船撞作用下的群桩基础力学模型,提出承台受扭转作用时的单桩桩基内力计算方法。4. 采用经验公式法、有限元法及动力模拟法对船撞力进行了计算,运用 AASHTO模型对船撞桩基础的概率进行了计算,并以此为基础得出防撞力标准。结果表明:动力模拟计算的船撞力最大,其中主通航孔各墩为 34.66MN,非通航孔为 22.14MN;船撞桩基础的概率主通航孔各墩为 2.

5、18710-4,非通航孔为 0.49210-4;经检验假定的主通航孔墩设计防撞力标准 34.5MN,非通航孔过渡墩 21.5MN满足规范要求。I 5. 提出跨海大桥深水基础的承台采用钢套箱作为防撞设计,承台处在合适的水面标高能有效降低桥梁基桩受船撞的风险,并结合工程实际建议防撞钢套箱安装应和承台同步施工。介绍了防撞钢套箱和防撞墩的设计与施工关键技术。论文的研究成果对大型跨海深水桩基础桥梁的防撞理论体系的完善及设计与施工技术有借鉴价值。关键词:桥梁工程;桩基础;船撞试验;数值模拟;力学特性;风险评估;防撞设计与施工II Abstract Our country had built nearly

6、a hundred River-Crossing Bridges and Sea-CrossingBridges in recent twenty years. Many of them were world-renowned super engineering, butthe ship-bridge collisions took place usually in personnel dead, property lose and injured etc.Which meaned the anti-collision design and measures of bridge had obv

7、ious shortcomings innavigable waters. Our country started latly and also not notice the importance of research ofbridge collision avoidance, so the research of anti-collision design theory and calculationmuch dependended on foreign, which form a disproportion with chinas general level ofbridge const

8、ruction. Combining with the engineering of Pingtan Strait Bridge, the simulatedtest, numerical analysis and theoretical analysis methods to research on the ship collisionprevention ability of bridge piles foundation in deep water was stuied in this paper. Based onthe analysis, the safety assessment

9、of ship bridge collision risk was carry out, the typeselection of anti-collision and the key technology of anti-collision facilities design andconstruction of piles foundation in deep water was put forward. The main results were shownas the following:1. The bridge simulation test of ship collision o

10、f Pingtan bridge was carried out to verifythe the accuracy and reasonableness of calculation parameters of the numerical simulationmethods. The results of ship collision test showed that: the natural frequency of pier on theenvironment excitation was close to finite element simulation, the data curv

11、es of accelerationand velocity of the numerical simulation and vibration field testing had been showing a strongnonlinear, but the overall trend is consistent between the two curves. The experiment verifiedthe rationality of isotropic strain plasticity model relevant constitutive relations and relat

12、edcalculation parameters of anti collision steel box and marine steel, which provided anexperimental basis.to the crash finite element simulation.2. The results obtained from numerical simulation computation of ship impacting bridgepile foundation showed that:the head-on collision under the lowest n

13、avigable water level isthe most adverse conditions of ship bridge collision computing , and At this time the bendingmoment of pile foundation pile foundation is largest . Compared with no anti-collisionfacilities of pile foundation , the maximum impact force , horizontal displacement of pilecaps , m

14、aximum bending moment and maximum tension stress of pile foundation reducesignificantly , at the same time depth of ship collision reduce significantly as well withanti-collision facilities of pile foundation .3. The mechanical model of a group pile foundation under of the role of ship collisionIII

15、was established. When the cap was acted by twisting, the calculated of pile internal forces wasproposed.4. The ship collision force was calculated by using the empirical formula method, finiteelement method and dynamic simulation, the AASHTO model was used to calculate the shipcollision probability,

16、 and the collision force standard was deduced. The results show that: theresult of dynamic simulation wa the maximum force, and the force value of each pier of themain navigation was 34.66MN, while non-navigable was 22.14MN; ship collision probabilityof each pier of the main navigation was 2.18710 ,

17、 while non-navigable was 0.49210 ; it was-4 -4verified that the assumed collision force design standards value of main navigation pier34.5MN and non-navigable transition pier 21.5MN t meet the requirements.of specification.5. It was proposed that the anti-collision of deepwater pile foundation of cr

18、oss-sea bridewas designed with steel sleeve box. Pile caps with Sutable surface elevation could effectivelyreduce the risk of bridge hit by ship and it was recommend that the installation ofanti-collision steel crash box and the pile caps should be constructed synchronously. Thedesign and constructi

19、on technolygy of anti-collision steel boxed cofferdam and anti-collisionpier was introduced.The research results not only can improve theoretical system of large-scale cross-seacollision deepwater foundation of the bridge, but also have reference value to the design andconstruction techniques.Key wo

20、rds: Bridge engineering; Pile foundation; Trial of ship collision; Numericalsimulation; Mechanical properties; Risk assessment; The design andconstruction of collision avoidanceIV 目 录第一章概述 .11.1 目的和意义.11.2 桥梁防船撞能力及安全评估技术国内外研究现状与评述.21.2.1 船桥碰撞理论研究 . 3 1.2.2 船桥碰撞试验研究 . 6 1.2.3 船撞桥概率风险评估研究 . 10 1.2.4 桥

21、梁防撞设施研究 . 12 1.3 依托工程的项目概况.131.3.1 大桥结构设计组成 . 14 1.3.2 水文、地质及气象 . 16 1.3.3 通航孔主桥基础设计指标 . 16 1.3.4 通航标准 . 17 1.4 研究内容与主要技术方法.17第二章跨海大桥船撞桩基础承台的动力响应模拟试验研究 .202.1 概述.202.2 船撞桩基础承台现场模拟试验设计.202.2.1 船艏模型设计 . 20 2.2.2 撞击系统及撞击点的模型 . 21 2.2.3 试验仪器及测试系统 . 21 2.3 现场模拟试验内容与方法.222.3.1 试验方案 . 22 2.3.2 试验步骤 . 23 2.

22、4 现场模拟试验成果分析.242.4.1 环境激励下桥梁自振频率现场测试. 24 2.4.2 冲击激励下桥梁振动现场测试 . 24 2.5 船舶撞击桩基础承台数值模拟试验研究.292.5.1 碰撞过程的计算方案及计算参数选取 . 29 2.5.2 船桥碰撞模型的建立 . 31 V 2.5.3 数值模拟成果分析 . 32 2.6 现场模拟试验成果与数值模拟试验成果对比分析 . 392.6.1 自振频率现场模拟测试成果与数值模拟试验成果对比分析 . 39 2.6.2 冲击激励振动现场模拟试验成果与数值模拟成果对比分析 . 40 2.7 小结 . 43第三章跨海大桥深水基础船撞后桩基础力学特性数值模

23、拟分析. 443.1 概述 . 443.2 非线性动态数值仿真原理 . 443.2.1 非线性有限元控制方程 . 44 3.2.2 非线性问题的求解方法 . 46 3.2.3 碰撞中的接触算法 . 47 3.3 船桥碰撞数值模拟计算分析方案 . 493.3.1 船舶型式及设计撞击速度 . 49 3.3.2 主墩防撞设施 . 49 3.3.3 防撞水位 . 50 3.3.4 计算分析内容 . 50 3.4 船桥碰撞模型的建立及参数选取 . 513.4.1 几何模型与有限元划分 . 51 3.4.2 边界条件 . 53 3.4.3 参数选取 . 53 3.5 数值模拟成果与分析 . 573.5.1

24、 船舶与无防撞设施的桩基础碰撞分析 . 57 3.5.2 船舶与有防撞设施的桩基础碰撞分析 . 63 3.6 小结 . 68第四章跨海大桥船撞深水桩基础的理论计算与分析. 694.1 概述 . 694.2 船撞荷载作用下群桩基础桩顶荷载的计算理论 . 694.2.1 群桩基础桩顶荷载计算理论2 . 69 4.2.2 群桩基础的桩基受扭计算理论 . 75 4.2.3 船撞偏心荷载作用下群桩基础桩顶荷载计算 . 77 VI 4.3 跨海大桥深水桩基础船撞力的计算理论.784.3.1 经验公式法计算船撞力 . 79 4.3.2 有限元法计算船撞力 . 80 4.3.3 船舶撞击力动力模拟计算 . 81 4.3.4 不同计算方法得出船撞力的比较 . 85 4.4 小结.86第五章跨海大桥深水桩基础船撞概率风险评估及防船撞安全技术研究 .875.1 概述.875.2 海上深水大跨度桥梁桩基础撞击概率的理论评估方法.875.2.1 用于桥梁船撞概率计算的船舶分类方法 . 87 5.2.2 现有的桥梁船撞概率计算模型 . 88 5.2.3 已有计算模型的适用性分析 . 95 5.3 海上深水大跨度桥梁桩基础防撞力标准的确定.955.3.1 防撞力标准研究的一般思路和方法.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1