第四章新药研究概论.ppt

上传人:本田雅阁 文档编号:2097003 上传时间:2019-02-13 格式:PPT 页数:156 大小:4.05MB
返回 下载 相关 举报
第四章新药研究概论.ppt_第1页
第1页 / 共156页
第四章新药研究概论.ppt_第2页
第2页 / 共156页
第四章新药研究概论.ppt_第3页
第3页 / 共156页
亲,该文档总共156页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第四章新药研究概论.ppt》由会员分享,可在线阅读,更多相关《第四章新药研究概论.ppt(156页珍藏版)》请在三一文库上搜索。

1、第四章 新药研究概论,Outline of Drug Research,新药研究概论,引言 Introduction 先导化合物的产生 Lead discovery 先导化合物的优化 Lead optimization,第一节 引言,新药研发 R&D of New Drugs 新药 新药研发过程 新药研发涉及学科 新药研发特点 药物分子设计 Molecular Drug Design 概念及内容 先导化合物 Lead Compound,New Drugs,新药系指我国未生产过的药品。按审批管理的要求,新药分为中药、化学药品和生物药品。 新化学实体 NCE(new chemical entiti

2、es) 首次成为药品的新化学结构,新药研发过程,1. 制定研究计划,设计实验方案并实施之,获得潜在NCE 2. 临床前研究,获得 IND(investigational new drug) 西药临床前22项(新药证书,25项) 中药临床前19项(新药证书,22项),新药研发过程,3. 临床试验(或临床验证),获得 NDA(new drug approval) Phase I: 2030例健康受试者 Phase II: 不少于100例典型患者 Phase III: 不少于300例患者 4. 上市后研究,临床药理 试生产期,Phase IV: 2000例,新药研发是一项系统工程,涉及多个学科,分子

3、生物学 分子药理学 生物信息学 药物化学 计算机科学,药物分析化学 药理学 毒理学 药剂学 制药工艺学,发现,I 期,II 期,III 期,IV 期,政府审批,临床前 研究,临床实验,平均约15年,新药研发特点,投资高 周期长 风险高 利润高 竞争激烈,Introduction,新药研发 R&D of New Drugs 新药 新药研发过程 新药研发涉及学科 新药研发特点 药物分子设计 Molecular Drug Design 概念及内容 先导化合物 Lead Compound,药物作用的三个重要相,给药剂量,剂型崩解药物溶出,可被吸收的药物,药物利用度,吸收、分布、代谢、排泄,可产生作用的

4、药物,生物利用度,药物与靶点相互作用,效应,药剂相,药代动力相,药效相,Molecular drug design,药物的基本属性(安全性、有效性、稳定性、可控性),在一定意义上,由药物的化学结构所决定。 药物分子设计是实现新药创制的主要途径和手段。 - 通过科学的构思和理论的规划,构建具有预期药理活性的新化学实体的分子操作。,Molecular drug design,创制新药的四要素 生物靶标的选择 检测模型的确定 先导化合物的发现 先导化合物的优化,Molecular drug design,药物分子设计由多学科相互穿插,交替进行,药物设计学,分子生物学 结构生物学,基因组 生物信息学,

5、数学 统计学,药物化学 有机药物化学,计算机科学 计算化学,分子药理学 一般药理学,Introduction,新药研发 R&D of New Drugs 新药 新药研发过程 新药研发涉及学科 新药研发特点 药物分子设计 Molecular Drug Design 概念及内容 先导化合物 Lead Compound,先导化合物 Lead compound,简称先导物(Lead),是指新发现的对某种靶标和模型呈现明确药理活性的化合物。,药物分子设计的策略基础,分子的多样性、互补性和相似性构成了设计方法的策略基础 分子的多样性(diversity)是先导物发现的物质基础 分子的互补性(complem

6、entarity)是分子识别和受体-配体结合的基础和推动力 分子的相似性(similarity)在不同的层次上有不同的含义,先导物发现,先导物优化,互补性,相似性,多样性,包容性,反相似性,不相似性,第二节 先导化合物的发现 Lead discovery,分子的多样性 天然生物活性物质 组合化学 组合生物合成和组合生物催化 基于临床副作用观察产生先导物 虚拟筛选 分子的互补性 基于生物大分子结构和作用机理的药物分子设计 反义寡核苷酸,Lead discovery and optimization,分子的相似性 基于内源性配体分子的药物设计 过渡态类似物 肽模拟物 生物电子等排置换 类似物变换

7、药物合成的中间体 基于代谢转化,1. 天然生物活性物质作为先导物,天然生物活性物质来源广泛 植物 动物 微生物 海洋生物 矿物,天然生物活性物质的特点 新颖的结构类型(分子多样性) 独特的药理活性 资源有限及地域性差异 有效成分含量很低 大多数结构复杂,作用强度不同,一、天然生物活性物质,(一)青蒿素,青蒿素是我国学者自黄花蒿分离出的倍半萜类化合物,具有强效抗疟作用。青蒿素分子中含有的过氧键证明是必要的药效团。由于青蒿素的生物利用度较低,而且复发率较高,对其进行优化获得一些更好的治疗各种疟疾的药物。,(二)长春花生物碱,长春碱和长春新碱从长春花中分离出来。具有抗癌作用但都有神经毒作用。长春地辛

8、是它们的半合成产物,具有相同的作用。诺维本是化学合成物,其药效学和药代动力学限制均强于天然的生物碱,临床已用于治疗小细胞肺癌和乳腺癌等。,长春新碱为夹竹桃科植物长春花中提取的有效成分。抗肿瘤作用靶点是微管,主要抑制微管蛋白的聚合而影响纺锤体微管的形成。使有丝分裂停止于中期。还可干扰蛋白质代谢及抑制RNA多聚酶的活力,并抑制细胞膜类脂质的合成和氨基酸在细胞膜上的转运。,(三)喜树碱,喜树碱具有强效抗癌作用,但毒性较大,水溶解度较低。,【药理毒理】羟基喜树碱具有显著的抗癌活性。10-羟基喜树碱是喜树碱分子的第10位碳原子的氢被羟基取代。因此可认为是CPT的天然衍生物。 羟基喜树碱的抗癌作用与抗代谢

9、药及烷化剂不同。动物实验证明,羟基喜树碱作用于S期为细胞周期特异性药物。对S期的作用较G1期和G2期明显。对G0期细胞无作用。在较高浓度时对核分裂有抑制作用。阻止细胞进入分裂期。,天然生物活性物质作为先导物,紫杉醇,紫杉醇 Taxol,红豆杉 Taxus,紫杉特尔 Taxotere,(四)紫杉醇,紫杉醇是从红豆杉属植物中分离提取的一种具有紫杉烷的新型抗癌药。自1992年12月底,美国FDA正式批准紫杉醇用于治疗卵巢癌和乳腺癌,至今已在40多个国家上市。,目前,国产紫杉醇的纯度在95%以上,已用于临床,并获新药证书。紫杉醇独特的抗癌机制使之成为全球抗癌药物研究热点。预测在今后10-15年内,紫杉

10、醇是最畅销的植物药之一,年销售额将达10亿美元。,红豆杉生长极其缓慢,紫杉醇含量又相当低,1kg树皮仅能获得50-100mg紫杉醇,加之植物资源破坏严重,更加剧了紫杉醇供应危机。,对此,科学家们开展了紫杉醇的全合成、半合成、结构修饰以及组织培养、真菌发酵和人工栽培等方面的广泛研究。尤其是紫杉醇结构与药效是近年来紫杉醇化学研究最活跃的领域,可以通过化学结构的改造修饰,有望能获得易溶于水、抗癌活性高、毒副作用低的新型紫杉醇类似物,如含叔丁基的类似物(Docetaxel)增加了水溶解性,活性强于紫杉醇,且无交叉耐药性,已于临床使用。,天然生物活性物质作为先导物,局麻药,可卡因 Cocaine,南美洲

11、古柯 Erythroxylum coca Lam,普鲁卡因 Procaine,天然生物活性物质作为先导物,抗生素类,天然抗生素,微生物培养液,半合成抗生素,天然生物活性物质作为先导物,动物毒素 蛇毒Bungarotoxin,N2受体拮抗剂肌松药 蛇毒Batroxobin,溶血栓酶抗栓药 鱼毒Tetrodotoxin,钠通道阻断剂心血管药物 蜂毒Apamin,钙通道阻断剂和钾通道开放剂心血管药物,2.组合化学 Combinatorial chemistry,同时制备含众多分子的化合物库 以代数级数增加构建块的数目,库容量则以几何级数增加 与高通量筛选(high-throughput screen

12、ing, HTS)技术结合,可极大地加快先导物发现和优化的速度,平行合成和混分合成 固相合成和液相合成 小分子组合合成 计算机辅助设计及虚拟库合成,3.组合生物合成 Combinatorial biosynthesis,基本原理,基因变异(混合、匹配、交换、突变等),基因克隆,多种变异的酶系,多种非天然的天然物质,聚酮合酶催化合成红霉素,4.组合生物催化 Combinatorial biocatalysis,基本原理,变异酶系或微生物酶系,催化小分子化合物转化,多种人工的天然化合物,区域选择性和立体选择性,岩白菜内酯的生物催化组合库,5.基于临床副作用观察产生的先导物,单氨氧化酶抑制剂的发现,

13、格鲁米特的芳构酶抑制作用,6. 筛选发现先导物,随机与非随机筛选 Random/nonrandom screening 高通量筛选 High-throughput screening (HTS) 虚拟筛选 Virtual screening,Virtual screening,用计算机筛选的方法称为虚拟筛选,或称in silico筛选 ,成为in silico-in vitro-in vivo模式 。 用一系列“基于知识的滤片”对虚拟库“筛选”,以“浓缩”出能够满足预定标准的化合物。 这些滤片包括类药性(drug like),药代动力学性质,毒性,知识产权问题以及与受体的互补性或与配体的相似性

14、等,是通过数据库搜寻和计算化学实现的。,Virtual screening,类药性,Lipinski归纳的“类药5规则”(Rule of Five),概括了类药的最低标准,即分子量在500以下;氢键的给体不超过5个;氢键的受体不超过10个;计算的分配系数(正辛醇-水系统)clgP值不超过5。上述原则只限于化合物经被动扩散机理的吸收。 化合物的柔性不宜过强。否则会存在许多种构象。 化合物不得含有重金属和反应活性基团。,药代动力学性质,临床试验被终止淘汰的候选药物40%是由于药代动力学不合理造成的。 决定药物能够穿越细胞膜并在胞浆中转运的性质是分子的化学结构,表现在分子量,离解常数,亲脂性,极性表

15、面积,以及形成氢键的数目等。 药物的代谢转化主要在肝脏中发生。将细胞色素P450 2D6和3A4催化中心的三维结构作为药效团,可用于预测未知化合物的代谢命运。通过分析化合物的三维结构与半衰期的相关性,可以来预测未知物的代谢模式 。,毒性的预测,基于已有化合物的毒性和结构特征,经线性判别分析和多重回归分析得到的模型,可用来预测未知物的毒性。 基于知识的专家系统(knowledge-based system)的软件如DEREK,可批处理化合物的致癌性、致畸性、致突变性、刺激性、皮肤敏感性、急性毒性和神经毒等。另一个基于知识的专家系统是HazardExpert程序,通过输入化合物名称、给药途径、剂量

16、和用药时程,程序可给出结果。,基于结构的设计,在受体结构信息已知的情况下,可根据结合部位的三维结构信息,用分子对接方法,对互补性好、评分高的化合物,可预计有较强的亲和力。若不知受体的三维结构,可根据药效团特征筛选虚拟库,并以不同程度的限制条件,“滤除”与药效团无相似性的分子。,知识产权的预测,化合物具备自主的知识产权和专利保护的前景,是开发决策的重要指标,筛选虚拟库和组合库时要剔除已被其它专利覆盖或有可能侵权的化合物。所以,完备的化合物检索查新系统可确保化合物结构的新颖性。,Lead discovery,分子的多样性 天然生物活性物质 组合化学 组合生物合成和组合生物催化 基于临床副作用观察产

17、生先导物 虚拟筛选 分子的互补性 基于生物大分子结构和作用机理的药物分子设计 反义寡核苷酸,7.基于生物大分子结构和作用机理设计先导物,合理药物设计 Rational drug design 合理药物设计即以药物作用靶点的三维结构和生物化学作用机制为基础进行药物设计的方法 Structure-based drug design Mechanism-based drug design,Structure-based drug design,了解生物大分子(受体)的三维结构,特别是与配体分子形成的复合物的三维结构,是前提 大分子与小分子的结合模式是基础 多种方法并用 数据库搜寻 分子碎片连接 从头

18、构建,HIV protease,Complex of HIV protease and its inhibitor,Interactions between enzyme and substrate peptide,Peptidomimetic HIV protease inhibitors,P1,P1,H-bond donor/acceptor,8.5-12.0 ,3.5-6.5 ,3.5-6.5 ,HIV protease inhibitors,HIV protease inhibitors,Interactions between enzyme and inhibitors,HIV pr

19、otease inhibitors,IC50=0.32 mol/L,由受体结构特点设计活性化合物,作用于同一受体的药物活性构象分析,伸展型构象,平面伸展型构象,8.反义核苷酸 Antisense oligonucleotides,能够与DNA 或信使RNA发生特异性结合,分别阻断核酸的转录或翻译功能,阻止与病理过程相关的核酸或蛋白质的生物合成。这种可与DNA或信使RNA结合的互补链称作反义寡核苷酸。,如果设计能够与DNA或信使RNA发生特异结合,分别阻断核酸的转录或转译功能,则会阻止与病理过程相关的核酸或蛋白质(例如酶或受体)的生物合成。这种可与DNA或信使RNA结合的互补链称作反义寡核苷酸。

20、,八、反义核苷酸,许多疾病的原因是基因组的缺陷或在基因转录或翻译过程中的失常,迄今完全清楚DNA结构与功能的改变同临床表现的相关疾病是癌症和病毒性疾病。 反义寡核苷酸所带的碱基与DNA或信使RNA片段呈互补时,可与之结合,形成DNA-寡核苷酸或mRNA-寡核苷酸杂交链,选择性地抑制基因的表达。,八、反义核苷酸,八、反义核苷酸,反义寡核苷酸用作药物的标准:,容易合成并可大量制备,在体内稳定,能够忍受核酸酶对磷酸二酯键的水解,能够进入并停留在靶组织处,反义核酸,在人体基因中约有3x109碱基对,在统计学意义上一个17个碱基的寡聚核苷序列只在人体基因中出现一次,1,12,17,HIV原病毒DNA,大

21、肠杆菌DNA,人DNA,7,103,106,109,基因中碱基对的数目,各种基因的大小及其对应的寡聚核苷酸的长度,寡聚核苷酸的长度,如果靶分子的核酸序列已知,就可以根据碱基配对原理,直接写出抑制剂反义核苷酸的化学结构, 这就是理想的药物设计,它不同于以蛋白质为靶点的传统的药物设计模式,不需要以X射线衍射和 NMR分析数据为基础,Common building-blocks of nucleic acids,反义核苷酸作为药物的条件 制备方法简便、经济 具有一定的稳定性 具有较强的细胞通透性 能在靶细胞内保持一定的浓度 能与靶细胞内特定位点作用 不与其他生物大分子反应,反义寡核苷酸的分子大小是设

22、计的重要环节 1225范围,1520较佳 反义核苷酸的类似物 局部修饰(碱基杂环、硫代、甲基磷酸酯等) 骨架类似物(PNA等),福米韦生 Fomivirsen,九、幸运发现的先导物,(一)青霉素的发现,青霉素发现的背景:青霉素发现以前,因为伤口细菌感染导致的伤口恶化,是困扰医学界一个很大的难题,这让即使手术成功的病人还是不得不承受着很大的生命危险。而金色葡萄球菌就是一种常见的病原菌。金色葡萄球菌有嗜肉菌之名。人的伤口感染之后极易引起感染,伤口恶化。而弗莱明则从事的是此方面的研究。,金色葡萄球菌耐盐度高,培养基为了保证菌种纯正会加入限制其他菌种生存的物质,金色葡萄球菌则是在培养基中加入高浓度食盐

23、以防止其它杂菌生长。而故事首先是因为培养基而开始的:因为培养基没有加入高浓度食盐,并且没有盖上盖子与空气隔绝。不久之后培养基上长出了青霉,而一般说来,这样的培养基就已经没用了。这本来是一个工作的疏忽。,这里要说到的是青霉素并不是指的青霉,虽然青霉素由青霉产生。青霉并不是一种神秘的物质,橘子变质就很容易长出青霉。所以培养基上长出青霉,本来是一件司空见惯的事情。但是恰巧的是弗莱明这次没有司空见惯。他将培养基放在显微镜下观察,发现青霉生长的菌落,金色葡萄球菌都出现了死亡。他意识到青霉可以制造一种可以抑制葡萄球菌生长的物质。当然这就是青霉素,随着青霉素的发现,更多的抗菌素也相继被生产出来。医学界进入一

24、个抗菌素的时代。但是随着抗生素的滥用,新的问题出现了,细菌的耐药性越来越强,抗生素的药效越来越有限。这不得不让人期待下一个伟大的偶遇又会是怎么样的呢?,(二)苯二氮卓的发现,氯氮卓(利眠宁)于1960年用于临床作为安定药。,(三)铂配合物,在研究电流对大肠杆菌生长的作用时,观察到菌体细胞变大了,后证明是铂电极在电流的作用下生成了铂配合物,释放到溶液中影响了大肠杆菌的生长。进而在细胞培养液中加入顺式构型的铂配合物就会使细胞变大。用顺铂,研究对移植性肿瘤试验表明,有强效细胞毒作用,从而开辟了顺铂类化疗药物。 (1969年),(四)降转氨酶药物联苯双酯,先导物的优化,为什么要进行先导物的优化,先导物

25、只提供一种具有特定药理作用的新结构类型;不足之处:可能药效不强,特异性不高,药代动力学性质不合理,或毒性较大等。,优化的方法?,对先导物进行结构改造或修饰。一般方法有剖裂和类似(引入烯键;合环和开环;大基团的引入、去除或置换;改变基团的电性,生物电子等排)等。,?,第三节 先导化合物的优化 Lead discovery and optimization,分子的相似性 基于内源性配体分子的药物设计 过渡态类似物 肽模拟物 生物电子等排置换 类似物变换 药物合成的中间体 基于代谢转化,从内源性活性物质发现先导物,酶反应过程:酶抑制剂 酶结构 底物、过渡态、产物结构 ACEI、COX-2、GABA-

26、T、MAO抑制剂等 抗代谢物:酶抑制剂,致死合成 与受体作用过程:激动剂或拮抗剂 受体结构 配体结构 肾上腺素能药物、胆碱能药物、甾体药物等,5羟色胺受体激动剂,脑内5-HT水平降低会引起偏头痛,变换结构以提高对5-HT1受体选择性激动活性,5-HT1激动剂舒马普坦(Sumatriptan)用于治疗偏头痛,H2受体拮抗剂类抗溃疡药,选定靶点 组胺H2受体 确立研发目标 抑制胃酸分泌药物 建立动物筛选模型 麻醉兔灌胃 从H2受体天然激动剂 组胺入手,以其为先导结构,保留咪唑环,改变侧链,开始优化,肽模拟物,蛋白酶抑制剂,肾素的过渡态类似物抑制剂,羟基亚乙基等排体,生物电子等排置换 Bioisos

27、terism,1932, Erlenmeyer,药物化学 原子团中只有边界电子 boundary electrons 或外围电子 outer electrons 的数目是决定电子等排体的条件 用电子等排体性质相似的原理研究药理作用与化学结构的关系,生物电子等排 Bioisosterism,50 Friedman, 生物电子等排 外围电子数目相同或排列相似,具有相同生物活性或拮抗生物活性的原子、基团或部分结构,即为生物电子等排体,某些官能团的等电性、等疏水性、等立体性,Topliss决策法,类似物变化的一般方法,剖裂物 同系物 引入烯键 合环和开环 大基团的引入、去除或置换 改变基团的电性 生物

28、电子等排 孪药,1.剖裂物简化复杂结构,2.同系物变换 Homology principle,A-(CH2)n-B 彼此互为同系物 同系物的理化性质及生物活性的变化无统一规律 递变 gradation 交替 alternation 翻转 inversion,a,b,c,d,e,a. 溶解度 mol106/l,b. 对伤寒杆菌的毒性 浓度倒数 l/mol106,c. 降低水表面张力 至50达因/cm2的 浓度 mol106/l,d. 25C时蒸汽压 mm104,e. 水/棉子油中的 分配系数103,正第一醇,活性递增,0,10,20,30,40,50,60,70,80,90,100,C1,C2,

29、C3,C4,C5,C6,H,PAF-acether 同系物的抗凝作用,0,200,400,1200,600,800,1400,1000,5,9,11,15,17,19,3,Chain length,Alternation,n,E,n,E,incomplete,complete,氨基喹啉类的抗疟活性,0,20,40,60,80,100,4,5,7,6,8,9,10, Effect,n,Inversion,3.引入烯键,插烯原理(Vinylogy principle):插烯物 A-(CH=CH)n-B,A、B 之间的电性可通过共轭双键传递。 可应用于其他共轭体系:亚胺、乙炔基、苯环、芳杂环等。,在

30、饱和碳链上引入双键,分子的构型和构象改变较大,生物活性变化也较大。 插烯物与原药物相比,通常易代谢降解、活性降低和毒性可能增大(共轭双键的反应性)。 插烯物变换时,A-(CH=CH)n-B,改变了A、B间的距离。,引入烯键,引入烯键,作用相似,时间缩短,4.合环和开环,合环使构象固定,影响药效学性质 药效不变 药效增强 药效降低 产生新药效 活性构象的研究 改变药动学性质,可用于设计前药,作用增强,5.大基团的引入、去除或置换,引入大基团往往造成生物活性很大变化, 甚至造成作用翻转 在易变结构附近引入障碍基团,可稳定易变部位 将稳定基团换以易变基团,可使作用限于局部或迅速代谢失活,减轻副作用

31、引入极性或离子性基团,可限制药物分布,引入大基团往往造成生物活性很大变化,在易变结构附近引入障碍基团,可稳定易变部位,将稳定基团换以易变基团,可使作用限于局部或迅速代谢失活,减轻副作用,中枢积蓄致惊厥,引入极性或离子性基团,可限制药物分布,限制药物分布可改变药物的作用范围,限制药物分布可提高药物的选择性作用,6.改变基团的电性,诱导效应 由于元素电负性的不同,分子内电荷沿着单键移动所产生的静电引力 共轭效应 分子中存在的共轭或p共轭,由于电子的离域化而导致电荷的流动,诱导效应(+I/-I),负诱导效应的吸电子性强弱顺序 -NH3+, -NR3+, -NO2, -CN, -COOH, -COOR

32、, -CHO, -COR, -F, -Cl, -Br, -OH, -OR, -SH, -SR, -CH=CH2, -CR=CR2, -CCH 正诱导效应的推电子性强弱顺序 -CH3, -CH2R, -CHR2, -CR3, -COO-,共轭效应(+R/-R),同时具有-R和-I的基团 -NO2, -CN, -CHO, -COR, -COOH, -COOR, -CONH2, -CF3 同时具有+R和+I的基团 -O-, -S-, -CH3, -CR3 同时具有+R和-I的基团 -F, -Cl, -Br, -I, -OH, -OR, -OCOR, -SH, -SR, -NH2, -NR2, -NH

33、COR,7. 孪药 Twin drugs,拼合原理 Association principle 药理作用的类型 拼合结构的专属性 有效剂量 拼合的方式 孪药 两个相同的或不同的先导物或药物经共价键连接,缀合成新的分子,称作孪药。,双分子孪药,协同孪药,双效作用孪药,抗溃疡,治疗褥疮,通过间隔基相连,药物合成的中间体作为先导物,抗结核,基于代谢转化发现和优化先导物,代谢活化 活性代谢物作为先导物 前药设计 代谢失活 软药设计,基于生物转化发现先导物,磺胺的发现,基于生物转化发现先导物,抗疟药环氯胍,保泰松的代谢活化,前药概念的提出,Albert, A. (1958) Chemical aspec

34、ts of selective toxicity. Nature (London) 1958; 182: 421-423. 提出前药概念,描述经过生物转化后才显示出药理作用的任何化合物 Harper, N. J. Drug latentiation. J. Med. Pharm. Chem. 1959; 1: 467-500. 提出药效潜伏化概念,通过对生物活性化合物的化学修饰形成新的化合物,后者在体内酶的作用下释放出母体化合物而发挥作用。,前药的概念,前药(prodrug)泛指一类体外活性较小或无活性,在体内经酶或非酶作用,释出活性物质而发挥药理作用的化合物。 载体连接前药(carrier-

35、linked prodrug) 生物前体(bioprecursor) 前药特指将活性药物(原药)与某种化学基团、片段或分子(或称暂时转运基团)经共价键连接,生成的新化学实体。,生物前体(bioprecursor),非甾抗炎药舒林酸(sulindac)的还原性生物活化,载体连接前药,口服氨苄西林前药,氨苄西林的口服吸收率为40,其前药几乎可以定量吸收(9899%); 前药在血液中释放氨苄西林的速度快(不 超过15 min); 巴氨西林释放出的载体是体内存在的物质,所以巴氨西林的耐受性比匹氨西林更好; 口服巴氨西林后与肌注等摩尔氨苄西林的血药浓度相当; 前药用量(0.8-1.0g/d)比氨苄西林用

36、量(2.0g/d)少得多; 匹氨西林和巴氨西林在体外无抗菌活性,只有在体内释放出氨苄西林后才表现出活性。,前药的特征,原药与载体一般以共价键连接 前药可在体内断裂形成原药,为可逆性或生物可逆性药物 前药应无活性或活性低于原药 前药与载体分子应无毒性 前药在体内产生原药的速率应是快速动力学过程,以保障原药在作用部位快速释放,有足够的药物浓度,并应尽量减低前药的直接代谢。,制备前药的一般方法,醇类:酯、缩醛或缩酮 羧酸类:酯、伯酰胺、酸酐 胺类:酰胺、亚胺、偶氮 脒类:氨基甲酸酯 羰基类:缩醛或缩酮、噁唑啉、噻唑啉、亚胺、肟,前药的应用,增加脂溶性以改善吸收和分布 提高作用部位特异性 提高化学稳定

37、性 消除不适宜的制剂性质 延长作用时间 增加水溶性,增加脂溶性以改善吸收和分布,口服无活性,口服吸收好,提高作用部位特异性,部位指向性药物输送 Site-directed drug delivery 能增加或选择性转运原药到达作用部位的前药 部位特异性药物释放 Site-specific drug release 虽然全身分布,但只在靶器官才产生作用的前药,Site-directed drug delivery,由于胆酸药物复合体可被胆酸转运系统识别,故胆酸可用于肝脏特异性靶向给药,Site-specific drug release,细菌,大肠抗炎, 提高化学稳定性,消除不适宜的制剂性质,延

38、长作用时间,增加水溶性,抗体导向酶催化前药 Antibody-Directed Enzyme Prodrug Therapy, ADEPT,基本原理:将单克隆抗体与酶经共价键键合制成偶联物,注射到含有对应抗原的动物体内,由于单克隆抗体的导向作用,使偶联物聚集在有表面抗原的细胞周围。经一段时间后,体内给以前药,则细胞附近的酶将前药转变为活性形式,发挥治疗作用。而在正常组织中,由于缺乏抗原,含酶的偶联物分布较少,因而前药不会被活化。,ADEPT的酶系,羧肽酶G2(CPG2) 羧肽酶A 碱性磷酸酶 糖苷酶 青霉素酰胺酶 -内酰胺酶,ADEPT-Lactamase,癌细胞,单抗,-内酰胺酶,软药 So

39、ft drug,软药是指一类本身有治疗效用或生物活性的化学实体,当在体内起作用后,经预料的和可控的、通常为一步反应的代谢作用,转变成无活性和无毒性的化合物。 硬药的软性类似物 以无活性代谢物为线索设计软药,软药设计的目的是希望药物起效后,即刻经简单的代谢转变为无活性和无毒的物质,减少药物的毒副作用,提高治疗指数和安全性。,如何衡量一个药物?,评价一个药物,应从它的药效和毒性两方面来衡量,而不能只根据药效的强弱下结论。因为在临床上往往有这种情况:一个药效极强的药物,如果其毒性很大,并超过了一定限度,也就不能用于临床;相反,一个药物虽有一定毒性,但药效较好,使用较小剂量即可产生明显的疗效,而且如果

40、该剂量所呈现的毒性,对安全并不构成威胁,则认为仍具有治疗价值。,药效与毒性的关系,通常用治疗指数(therapeutic index,TI)来表示。TI = LD50/ED50,式中的LD50为半数致死量,ED50半数有效量。显然,药物的TI越大,它的安全、有效性越有保证。,由此可以看出,设法降低药物的毒性,与提高它的药理活性同样重要。软药的设计正是为此目的而成为开发新药的一条新的途径。,软药 Soft drug,与已知硬药的结构很相似 在非必须结构部位有易变结构 主要或唯一的代谢途径是可预知的 通过结构修饰可以调控代谢速率 代谢产物的毒性和活性极低 只需简单的代谢反应,不需P450参与的酶促过程,硬药的软性类似物,氯化十六烷基吡啶鎓 抗真菌药 LD50 = 103 mg/kg,Soft analog LD50 = 4110 mg/kg,硬药的软性类似物,以无活性代谢物为线索设计软药,无活性代谢物 Remifentanil,以无活性代谢物为线索设计软药,掌握药物设计领域的基本概念及原理,并能举例加以说明 掌握先导化合物的发现及其优化的主要途径和方法,并能举例加以说明和运用 了解新药研发的过程及其特点,主要学习的内容,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1