内置生物硝化区应用于Carrousel氧化沟提标改造试验研究.pdf.doc.doc

上传人:本田雅阁 文档编号:2180710 上传时间:2019-02-26 格式:DOC 页数:95 大小:3.11MB
返回 下载 相关 举报
内置生物硝化区应用于Carrousel氧化沟提标改造试验研究.pdf.doc.doc_第1页
第1页 / 共95页
内置生物硝化区应用于Carrousel氧化沟提标改造试验研究.pdf.doc.doc_第2页
第2页 / 共95页
内置生物硝化区应用于Carrousel氧化沟提标改造试验研究.pdf.doc.doc_第3页
第3页 / 共95页
亲,该文档总共95页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《内置生物硝化区应用于Carrousel氧化沟提标改造试验研究.pdf.doc.doc》由会员分享,可在线阅读,更多相关《内置生物硝化区应用于Carrousel氧化沟提标改造试验研究.pdf.doc.doc(95页珍藏版)》请在三一文库上搜索。

1、 内置生物硝化区应用于 Carrousel氧化沟提标改造试验研究重庆大学硕士学位论文(专业学位)学生姓名:王鑫鑫指导教师:何强教授兼职导师:李勇高工学位类别:专业学位(建筑与土木工程领域)重庆大学城市建设与环境工程学院二 O一四年五月 Study on Upgrading and Reconstruction of Carrousel Oxidation Ditch with Internal Biological Nitrification Area A Thesis Submitted to Chongqing Universityin Partial Fulfillment of the

2、 Requirement forProfessional DegreeByWang XinxinSupervisor by Prof. He QiangPluralistic Supervised by Li YongSpecialty: ME(Architectural andCivil Engineering Field)College of Urban Construction & Environmental Engineering of Chongqing University, Chongqing, China. May, 2014 中文摘要摘要随着社会的高速发展,城镇化规模的不断扩

3、大,导致城镇用水量和排水量的不断增加,水质污染严重、水资源短缺,严重地制约着社会经济的发展。水体的污染主要来源于氮磷排放,强化污水厂脱氮除磷、严格控制污水厂出水氮磷指标、实现污水处理能力的全面提升,对于水环境污染治理具有十分重要的意义。氧化沟因为具有较好的处理能力、流程简单、运行管理方便等优点得到广泛应用。但氧化沟作为活性污泥法的一种形式,容易出现积泥、污泥膨胀、污泥上浮等问题。将生物膜法应用于氧化沟可提高污泥沉降性、有效抑制普通氧化沟污泥膨胀的问题。本研究将活性污泥法与生物膜法结合,开发了内置生物硝化区应用于 Carrousel氧化沟的低成本提标改造技术。通过试验,在进水量为 136 m3/

4、d、表曝机频率为 33Hz的前提下,研究氧化沟主沟道底部曝气量(16m3/h、22m3/h、28m3/h)、隔板区水力负荷为 0.5 m3 / (m3 h)、0.67m3 / (m3 h)、0.83m3 / (m3 h)、污泥回流比(60%、80%、100%、120%)、隔板区底部曝气量(12m3/h、16m3/h、20m3/h)对反应器处理效能的影响,确定最佳运行工况;并研究了在最佳运行工况条件下各指标沿程变化规律以及效益分析。主要研究结果为:通过对反应器进行单因素试验研究,可知在进水量为 136 m3/d、表曝机频率为 33Hz的前提下,主沟道底部曝气量为 22m3/h、隔板水力负荷为 0

5、.67m3 / (m3 h)、污泥回流比为 100%、隔板区底部曝气量为 12m3/h是反应器最佳运行工况。在最佳工况运行条件下,反应器出水 SS、COD、TN、NH4+ - N、TP分别为 8.2mg/L、29mg/L、12.45mg/L、1.35mg/L、1.16mg/L,反应器对 SS、COD、TN、 NH4+ - N、TP去除率分别为 96.6%、86.9%、62.1%、95.8%、61.1%。本研究主要通过改造来强化生物脱氮能力,因此可以在生物除磷的基础上,辅以化学除磷。反应器在最佳工况下稳定运行,在氧化沟进水侧沟道,由于推进器及底曝的影响,泥水混合比较均匀,不同水深 DO变化不大,

6、基本呈缺氧-好氧环境。经过表曝后,中上层 DO达到 1.5mg/L以上,然后沿程逐渐下降,可以为同步硝化反硝化反应的发生提供良好的溶解氧环境。由于斜板沉淀区沉淀的污泥淤积在沟道底部,且小沟道底部流速很小,污泥未得到有效地搅拌混合,影响了溶解氧的传质效率,底层呈局部厌氧区,污泥活性较差。在隔板区内除第一分区处于厌氧环境,其它各区 DO浓度基本在 2.04.0mg/L范围内,均处于好氧状态,有利于培养和富集硝化菌,强化系统硝化能力,进而提高系统整体脱氮能力。在最佳工况运行条件下,由于厌氧池中回流污泥携带大量的硝酸盐以及对污染物的稀释作用、活性污泥团的吸附作用、反硝化作用以及聚磷菌的作用,厌I 重庆

7、大学硕士学位论文氧池对 COD、NH4+ - N、TN的去除比例最大,NO3- - N浓度增加、NO2- - N浓度略有增;在主沟道中,对 COD、NH4+ - N、TN的去除率比较小,COD、TN、NH4+ - N、NO3- - N、 NO2- - N浓度变化不大;隔板区整体呈好氧环境,由于进水 COD、NH4+ - N浓度较低,对 COD、 NH4+ - N、TN的去除率比较小,可见隔板区的硝化潜力未完全发挥出来;二沉池内发生内源反硝化,出水 COD、TN浓度降低、NH4+ - N浓度略升高。本研究分析了内置生物硝化区的氧化沟提标改造技术的可行性,可知反应器具有良好的环境效益;节省了占地面

8、积和基建投资,对于用地紧张和资金短缺的地区尤其适用,属于低成本提标改造。关键词:氧化沟,提标改造,悬浮填料,脱氮II 英文摘要ABSTRACT With the rapid development of modern society, the continuous expansion ofurbanization lead to increase of urban water consumption and displacement, waterpollution and water shortage, which seriously restricts the development of

9、socialeconomy. Water pollution is serious as a result of nitrogen and phosphorus emissions.To control the nitrogen and phosphorus emissions of sewage plants is meaningful forgovernance of water pollution.The oxidation ditch technology is widely used because of good processing capacity,simple process

10、, convenient operation and management. As a form of activated sludgeprocess, the oxidation ditch technology has problem with sludge deposit, sludge bulkingand sludge emersion. Appling biofilm process in oxidation ditch can improve sludgesettleability, and inhibit sludge bulking problem effectively.

11、This study developed aCarrousel oxidation ditch technology with internal biological nitrification area bycombining activated sludge process and biofilm process. The aim was to find reasonableoperating parameters and condition by comparing with the aeration at the bottom of theditch(16m3/h, 22m3/h, 2

12、8m3/h), the treatment loading of the diaphragm area filled with/ (m / (m / (mfiller(0.5 m h) ,0.67m h) ,0.83m h) ), the returned sludge ratio(60%,3 3 3 3 3 380%, 100%, 120%) and aeration at the diaphragm area filled with filler(12m3/h, 16m3/h,20m3/h) on the removal of SS, COD, NH4+-N, TN. Then this

13、study researched someindexsvariation along the direction of water flow in oxidation ditch and diaphragm areaand had a benefit analysis at last. The results showed that when the influent was 136 m3/d, the hydraulic retentiontime of the reactor was 7.1h, the aeration at the bottom of the ditch was 22

14、m3/h, thetreatment loading of the diaphragm area filled with filler was 0.67 m / (m h) , the3 3returned sludge ratio was 100% and the aeration at the bottom of the diaphragm areafilled with filler was 16 m3/h, the effluent of SS, CODcr, TN, NH4+-N, TP could reach8.2mg/L, 29mg/L, 12.45mg/L, 1.35mg/L,

15、 1.16mg/L with removal efficiency of 96.6%,86.9%, 62.1%, 95.8%, 61.1% respectively. This paper mainly researched the ability ofbiological denitrification by transformation, so the reactor could supplement bychemical phosphorus removal on the basis of biological phosphorus removal. When the reactor w

16、as under the optimal operating conditions, sludge mixedmore evenly, DO had a little change in different depth and the whole ditch wasIII 重庆大学硕士学位论文anaerobic- aerobic environment basically with the influence of the propeller and theaeration in the inlet side of the oxidation ditch. After the aerator,

17、 DO of upper andmiddle layer was more than 1.5 mg/L, then falled down along the direction of waterflow in oxidation ditch. This dissolved oxygen environment was beneficial to SND. Thesludge deposited by inclined plate sedimentation area was not mixed effectively, whichaffect the efficiency of dissol

18、ved oxygen mass transfer. In the diaphragm area filled withfiller, except the first area, DO in others was within the limits of 2.0 to 4.0mg/L and theareas was aerobic environment basically. It was beneficial to cultivate nitrobacteriumand strengthen efficiency of nitrification. Under the optimal op

19、erating conditions, the removal rate of COD, NH4+ - N ,TN was the largest in the anaerobic tank because of the large amount of nitrate carriedby returned sludge, the dilution effect by returned sludge, the adsorption effect ofactivated sludge group, the denitrification effect and the PAOs. In the an

20、aerobic tank,nitrate concentration increased and nitrite concentration increased slightly. In theoxidation ditch, the removal rate of COD, NH4+ - N , TN was low and the concentrationchange of COD, TN, NH4+ - N , NO3- - N , NO2- - N was not obvious. In thediaphragm area, because of the concentration

21、of COD, NH4+ - N of inlet was low andmost organic pollutant was nonbiodegradable organics, the removal rate of COD,NH4+ - N , TN was low. So it was known to us which nitrification potential ofdiaphragm area was not played out fully. In the secondary sedimentation tank, there wasendogenous denitrific

22、ation, so the concentration of COD, TN of outlet was increasedand the concentration of NH4+ - N of outlet was decreased conversely. This study analyzed the feasibility of Carrousel oxidation ditch technologywith internal biological nitrification area still. The reactor has good environmentalbenefits

23、; This technology could save the area and capital investment and it wasapplicative for the areas Which were lack of land and capital. Carrousel oxidation ditchtechnology with internal biological nitrification area belonged to low-cost upgradingand reconstruction technology.Keywords:Oxidation ditch,

24、Upgrading and reconstruction,Suspended filler, Nitrogen removalIV 目录目录中文摘要.I英文摘要. III1绪论. 11.1研究背景. 11.1.1我国水环境污染现状. 11.1.2我国城市污水处理形势 . 21.2氧化沟工艺发展现状 . 41.2.1氧化沟工艺概述. 41.2.2氧化沟工艺提标改造研究进展 . 91.2.3氧化沟工艺应用现状. 111.3生物膜-氧化沟研究现状. 121.3.1生物膜-活性污泥联合工艺研究现状. 121.3.2生物膜-氧化沟工艺研究现状. 141.4研究目的及内容. 151.4.1课题来源. 15

25、1.4.2研究目的. 151.4.3研究内容. 151.4.4技术路线. 162试验设计与启动 . 172.1试验装置设计. 172.1.1试验装置设计思路. 172.1.2试验装置设计参数. 172.1.3试验装置结构及尺寸. 192.1.4填料及附属设备. 202.2试验方案设计. 232.2.1试验场地. 232.2.2试验水质. 232.2.3试验监测断面. 232.2.4试验安排. 252.2.5测试项目及方法. 262.3设备启动. 27V 重庆大学硕士学位论文2.3.1污泥培养驯化. 272.3.2填料挂膜. 272.4本章小结. 283生物膜-氧化沟工艺运行的影响因素及优化研究

26、 . 293.1主沟道底部曝气量对反应器运行效能的影响. 293.1.1 SS去除效果分析 . 293.1.2 COD去除效果分析 . 303.1.3 NH4+-N去除效果分析. 323.1.4 TN去除效果分析. 333.1.5 TP去除效果分析 . 343.2隔板区水力负荷对反应器运行效能的影响. 353.2.1 SS去除效果分析 . 363.2.2 COD去除效果分析 . 373.2.3 NH4+-N去除效果分析. 393.2.4 TN去除效果分析. 403.2.5 TP去除效果分析 . 423.3污泥回流比对反应器运行效能的影响. 423.3.1 SS去除效果分析 . 433.3.2 COD去除效果分析 . 443.3.3 NH4+-N去除效果分析. 463.3.4 TN去除效果分析. 473.3.5 TP去除效果分析 . 483.4隔板区底部曝气量对反应器运行效能的影响. 493.4.1 SS去除效果分析 . 493.4.2 COD去除效果分析 . 503.4.3 NH4+-N去除效果分析. 523.4.4 TN去除效果分析. 533

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1