同济大学高等数学第六版第七章微分方程.ppt

上传人:本田雅阁 文档编号:2278334 上传时间:2019-03-15 格式:PPT 页数:65 大小:2.25MB
返回 下载 相关 举报
同济大学高等数学第六版第七章微分方程.ppt_第1页
第1页 / 共65页
同济大学高等数学第六版第七章微分方程.ppt_第2页
第2页 / 共65页
同济大学高等数学第六版第七章微分方程.ppt_第3页
第3页 / 共65页
亲,该文档总共65页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《同济大学高等数学第六版第七章微分方程.ppt》由会员分享,可在线阅读,更多相关《同济大学高等数学第六版第七章微分方程.ppt(65页珍藏版)》请在三一文库上搜索。

1、第七章 微分方程, 积分问题, 微分方程问题,推广,第七章,第一节 微分方程的基本概念 与一阶微分方程解法,一阶微分方程的基本概念与解法,引例,几何问题,物理问题,第七章,引例1.,一曲线通过点(1,2) ,在该曲线上任意点处的,解: 设所求曲线方程为 y = y(x) , 则有如下关系式:,(C为任意常数),由 得 C = 1,因此所求曲线方程为,由 得,切线斜率为 2x , 求该曲线的方程 .,引例2. 列车在平直路上以,的速度行驶, 制动时,获得加速度,求制动后列车的运动规律.,解: 设列车在制动后 t 秒行驶了s 米 ,已知,由前一式两次积分, 可得,利用后两式可得,因此所求运动规律为

2、,说明: 利用这一规律可求出制动后多少时间列车才,能停住 ,以及制动后行驶了多少路程 .,即求 s = s (t) .,常微分方程,偏微分方程,含未知函数及其导数的方程叫做微分方程 .,方程中所含未知函数导数的最高阶数叫做微分方程,(本章内容),( n 阶显式微分方程),一、微分方程的基本概念,一般地 , n 阶常微分方程的形式是,的阶.,分类,或, 使方程成为恒等式的函数.,通解, 解中所含独立的任意常数的个数与方程, 确定通解中任意常数的条件.,n 阶方程的初始条件(或初值条件):,的阶数相同.,特解,通解:,特解:,微分方程的解, 不含任意常数的解,定解条件,其图形称为积分曲线.,其图形

3、称为积分曲线族.,例1. 验证函数,是微分方程,的解,的特解 .,解:,这说明,是方程的解 .,是两个独立的任意常数,利用初始条件易得:,故所求特解为,故它是方程的通解.,并求满足初始条件,求所满足的微分方程 .,例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q,解: 如图所示,令 Y = 0 , 得 Q 点的横坐标,即,点 P(x, y) 处的法线方程为,且线段 PQ 被 y 轴平分,1、可分离变量微分方程,或,可分离变量方程。,形如,的微分方程称为,解法:可分离变量方程的解法:,两边积分, 得,则有,称为方程的隐式通解.,二、一阶微分方程的解法,例1. 求微分方程,的通解

4、.,解: 分离变量得,两边积分,得,即,( C 为任意常数 ),或,说明: 在求解过程中每一步不一定是同解变形,因此可能增、,减解.,( 此式含分离变量时丢失的解 y = 0 ),例2. 解初值问题,解: 分离变量得,两边积分得,即,由初始条件得 C = 1,( C 为任意常数 ),故所求特解为,例3. 求下述微分方程的通解:,解: 令,则,故有,即,解得,( C 为任意常数 ),所求通解:,练习:,解法 1 分离变量,即,( C 0 ),解法 2,故有,积分,( C 为任意常数 ),所求通解:,例4.,子的含量 M 成正比,求在,衰变过程中铀含量 M(t) 随时间 t 的变化规律.,解: 根

5、据题意, 有,(初始条件),对方程分离变量,即,利用初始条件, 得,故所求铀的变化规律为,然后积分:,已知 t = 0 时铀的含量为,已知放射性元素铀的衰变速度与当时未衰变原,例5.,成正比,求,解: 根据牛顿第二定律列方程,初始条件为,对方程分离变量,然后积分 :,得,利用初始条件, 得,代入上式后化简, 得特解,并设降落伞离开跳伞塔时( t = 0 ) 速度为0,设降落伞从跳伞塔下落后所受空气阻力与速度,降落伞下落速度与时间的函数关系.,t 足够大时,2、齐次方程,形如,的方程叫做齐次方程 .,令,代入原方程得,两边积分, 得,积分后再用,代替 u,便得原方程的通解.,解法:,分离变量:,

6、例1. 解微分方程,解:,代入原方程得,分离变量,两边积分,得,故原方程的通解为,( 当 C = 0 时, y = 0 也是方程的解),( C 为任意常数 ),例2. 解微分方程,解:,则有,分离变量,积分得,代回原变量得通解,即,说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但在,(C 为任意常数),求解过程中丢失了.,3、一阶线性微分方程,一阶线性微分方程标准形式:,若 Q(x) 0,称为非齐次方程 .,1. 解齐次方程,分离变量,两边积分得,故通解为,称为齐次方程 ;,对应齐次方程通解,齐次方程通解,非齐次方程特解,2. 解非齐次方程,用常数变易法:,则,故

7、原方程的通解,即,即,作变换,两端积分得,例1. 解方程,解: 先解,即,积分得,即,用常数变易法求特解. 令,则,代入非齐次方程得,解得,故原方程通解为,4、伯努利 ( Bernoulli )方程,伯努利方程的标准形式:,令,求出此方程通解后,除方程两边 , 得,换回原变量即得伯努利方程的通解.,解法:,(线性方程),例4. 求方程,的通解.,解: 令,则方程变形为,其通解为,将,代入, 得原方程通解:,一、可降阶高阶微分方程,第七章,二、线性微分方程解的结构,第二节,一、 可降阶的高阶微分方程,1、 型的微分方程 2、 型的微分方程 3、 型的微分方程,1、,令,因此,即,同理可得,依次通

8、过 n 次积分, 可得含 n 个任意常数的通解 .,型的微分方程,一、可降阶高阶微分方程,例1.,解:,型的微分方程,设,原方程化为一阶方程,设其通解为,则得,再一次积分, 得原方程的通解,2、,例2. 求解,解:,代入方程得,分离变量,积分得,利用,于是有,两端再积分得,利用,因此所求特解为,3、,型的微分方程,令,故方程化为,设其通解为,即得,分离变量后积分, 得原方程的通解,例3. 求解,代入方程得,两端积分得,(一阶线性齐次方程),故所求通解为,解:,例4. 解初值问题,解: 令,代入方程得,积分得,利用初始条件,根据,积分得,故所求特解为,得,为曲边的曲边梯形面积,上述两直线与 x

9、轴围成的三角形面,例4.,二阶可导, 且,上任一点 P(x, y) 作该曲线的,切线及 x 轴的垂线,区间 0, x 上以,解:,于是,在点 P(x, y) 处的切线倾角为 ,满足的方程 .,积记为,( 99 考研 ),再利用 y (0) = 1 得,利用,得,两边对 x 求导, 得,定解条件为,方程化为,利用定解条件得,得,故所求曲线方程为,二、 高阶线性微分方程 解的结构,2、线性齐次方程解的结构,3、线性非齐次方程解的结构,1、二阶线性微分方程,第七章,的方程,叫二阶线性微分方程。,二阶线性齐次微分方程,二阶线性非齐次微分方程,的方程,叫 n 阶线性微分方程。,1、二阶线性微分方程的概念

10、,形如,一般地,形如,二、 高阶线性微分方程解的结构,证毕,2、线性齐次方程解的结构,是二阶线性齐次方程,的两个解,也是该方程的解.,证:,代入方程左边, 得,(叠加原理),定理1.,说明:,不一定是所给二阶方程的通解.,例如,是某二阶齐次方程的解,也是齐次方程的解,并不是通解,但是,则,为解决通解的判别问题,下面引入函数的线性相关与,线性无关概念.,定义:,是定义在区间 I 上的,n 个函数,使得,则称这 n个函数在 I 上线性相关,否则称为线性无关.,例如,,在( , )上都有,故它们在任何区间 I 上都线性相关;,又如,,若在某区间 I 上,则根据二次多项式至多只有两个零点 ,必需全为

11、0 ,可见,在任何区间 I 上都 线性无关.,若存在不全为 0 的常数,两个函数在区间 I 上线性相关与线性无关的充要条件:,线性相关,存在不全为 0 的,使,线性无关,常数,思考:,中有一个恒为 0, 则,必线性,相关,(证明略),线性无关,定理 2.,是二阶线性齐次方程的两个线,性无关特解, 则,数) 是该方程的通解.,例如, 方程,有特解,且,常数,故方程的通解为,推论.,是 n 阶齐次方程,的 n 个线性无关解,则方程的通解为,3、线性非齐次方程解的结构,是二阶非齐次方程,的一个特解,Y (x) 是相应齐次方程的通解,定理 3.,则,是非齐次方程的通解 .,证: 将,代入方程左端, 得

12、,是非齐次方程的解,又Y 中含有,两个独立任意常数,例如, 方程,有特解,对应齐次方程,有通解,因此该方程的通解为,证毕,因而 也是通解 .,定理 4.,分别是方程,的特解,是方程,的特解. (非齐次方程之解的叠加原理),定理3, 定理4 均可推广到 n 阶线性非齐次方程.,定理 5.,是对应齐次方程的 n 个线性,无关特解,给定 n 阶非齐次线性方程,是非齐次方程的特解,则非齐次方程,的通解为,齐次方程通解,非齐次方程特解,常数, 则该方程的通解是 ( ).,设线性无关函数,都是二阶非齐次线,性方程,的解,是任意,例3.,提示:,都是对应齐次方程的解,二者线性无关 . (反证法可证),(89

13、 考研 ),例4.,已知微分方程,个解,求此方程满足初始条件,的特解 .,解:,是对应齐次方程的解,且,常数,因而线性无关,故原方程通解为,代入初始条件,故所求特解为,有三,第三节,常系数齐次线性微分方程,第七章,二阶常系数齐次线性微分方程:,和它的导数只差常数因子,代入得,称为微分方程的特征方程,1. 当,时, 有两个相异实根,方程有两个线性无关的特解:,因此方程的通解为,( r 为待定常数 ),所以令的解为,则微分,其根称为特征根.,2. 当,时, 特征方程有两个相等实根,则微分方程有一个特解,设另一特解,( u (x) 待定),代入方程得:,是特征方程的重根,取 u = x , 则得,因

14、此原方程的通解为,3. 当,时, 特征方程有一对共轭复根,这时原方程有两个复数解:,利用解的叠加原理 , 得原方程的线性无关特解:,因此原方程的通解为,总结:,特征方程:,实根,以上结论可推广到高阶常系数线性微分方程 .,二阶常系数齐次线性微分方程:,若特征方程含 k 重复根,若特征方程含 k 重实根 r , 则其通解中必含对应项,则其通解中必含,对应项,特征方程:,推广:,例1.,的通解.,解: 特征方程,特征根:,因此原方程的通解为,例2. 求解初值问题,解: 特征方程,有重根,因此原方程的通解为,利用初始条件得,于是所求初值问题的解为,第四节,第七章,常系数非齐次线性微分方程,一、,二、

15、,二阶常系数线性非齐次微分方程 :,根据解的结构定理 , 其通解为,求特解的方法,根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 ., 待定系数法,则有形如,的特解,其中,此结论可推广到高阶常系数线性微分方程 .,当 是特征方程的 k 重根 时, k=0,1,2,一、,待定多项式 .,为 m 次,对非齐次方程,例1.,的一个特解.,解: 本题,而特征方程为,不是特征方程的根 .,设所求特解为,代入方程 :,比较系数, 得,于是所求特解为,例2.,的通解.,解: 本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,比较系数, 得,因此特解为,代

16、入方程得,所求通解为,例3. 求解定解问题,解: 本题,特征方程为,其根为,设非齐次方程特解为,代入方程得,故,故对应齐次方程通解为,原方程通解为,由初始条件得,于是所求解为,解得,对非齐次方程,则可设特解:,其中,为特征方程的 k 重根 ( k = 0, 1),上述结论也可推广到高阶方程的情形.,二、,例4.,的一个特解 .,解: 本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数 , 得,于是求得一个特解,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数, 得,因此特解为,代入方程:,所求通解为,为特征方程的单根 ,因此设非齐次方程特解为,例6.,解: (1) 特征方程,有二重根,所以设非齐次方程特解为,(2) 特征方程,有根,利用叠加原理 , 可设非齐次方程特解为,设下列高阶常系数线性非齐次方程的特解形式:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1