存储设备.ppt

上传人:本田雅阁 文档编号:2315048 上传时间:2019-03-19 格式:PPT 页数:82 大小:826.51KB
返回 下载 相关 举报
存储设备.ppt_第1页
第1页 / 共82页
存储设备.ppt_第2页
第2页 / 共82页
存储设备.ppt_第3页
第3页 / 共82页
亲,该文档总共82页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《存储设备.ppt》由会员分享,可在线阅读,更多相关《存储设备.ppt(82页珍藏版)》请在三一文库上搜索。

1、第4章 存储设备,存储器可分为主存储器(Main Memory,简称主存)和辅助存储器(Auxiliary Memory,简称辅存)。主存储器又称内存储器(简称内存),辅助存储器又称外存储器(简称外存)。外存通常是磁性介质(软盘、硬盘、磁带)或光盘,能长期保存信息,并且不依赖于电来保存信息。,4.1 内存,4.1.1 内存的分类 内存泛指计算机系统中存放数据与指令的半导体存储单元。它包括RAM (Random Access Memory,随机存取存储器)、ROM (Read Only Memory,只读存储器)、Cache (高速缓冲存储器)等。因为RAM是其中最主要的存储器,整个计算机系统的

2、内存容量主要由它的容量决定,所以人们习惯将RAM直接称为内存,而后两种,则仍称为ROM和Cache。,1.只读存储器ROM 只读存储器ROM是计算机厂商用特殊的装置把内容写在芯片中,只能读取,不能随意改变内容的一种存储器,一般用于存放固定的程序,如BIOS,ROM中的内容不会因为掉电而丢失。ROM又分为一次写ROM和可改写ROMEPROM(Erasable Programmable ROM)。ROM中的信息只能被读出,而不能被操作者修改或删除。与一般的ROM相比,EPROM可以用特殊的装置擦除和重写它的内容。,EPROM: EPROM芯片上有一个透明窗口,用特殊的装置向芯片写完毕后,用不透明的

3、标签贴住。如果要擦除EPROM中的内容,揭掉标签,用紫外线照射EPROM的窗口,EPROM中的内容就会丢失。 EEPROM(Electrically Erasable Programmable ROM,电擦除可编程只读存储器): 它与EPROM非常相似,EEPROM中的信息也同样可以被抹去,也同样可以写入新的数据。EEPROM可以用电来对其进行擦写,而不需要紫外线。 闪速存储器Flash Memory 主要特点是在不加电的情况下能长期保存存储的信息。就其本质而言,Flash Memory属于EEPROM类型。它既有ROM的特点,又有很高的存取速度,而且易于擦除和重写,功耗很小。由于Flash

4、Memory的独特优点,可以将BIOS存储在其中,使得BIOS升级非常方便。,2随机存储器RAM RAM就是平常所说的内存,系统运行时,将所需的指令和数据从外部存储器(如硬盘、光盘等)调入内存中,CPU再从内存中读取指令或数据进行运算,并将运算结果存入内存中。RAM的存储单元根据具体需要可以读出,也可以写入或改写。RAM只能用于暂时存放程序和数据,一旦关闭电源或发生断电,其中的数据就会丢失。根据其制造原理不同,现在的RAM多为MOS型半导体电路,它分为静态和动态两种。,静态RAM (SRAM) SRAM (Static RAM) 的一个存储单元的基本结构是一个双稳态电路,由于读、写的转换由写电

5、路控制,所以只要写电路不工作,电路有电,开关就保持现状,不需要刷新,因此SRAM又叫静态RAM,由于这里的开关实际上是由晶体管代替,而晶体管的转换时间一般都小于20 ns,所以SRAM的读写速度很快,一般比DRAM快出23倍。微机的外部高速缓存(External Cache)就是SRAM。但是,这种开关电路需要的元件较多,在实际生产时一个存储单元需要4个晶体管和2个电阻组成,这样一方面降低了SRAM的集成度,另一方面也增加了生产成本。,动态RAM(DRAM) DRAM (Dynamic RAM) 就是通常所说的内存,它是针对静态RAM (SRAM)来说的。SRAM中存储的数据,只要不断电就不会

6、丢失,也不需要进行刷新。而DRAM中存储的数据是需要不断地进行刷新的。因为一个DRAM单元由一个晶体管和一个小电容组成。 晶体管通过小电容的电压来保持断开、接通的状态,当小电容有电时,晶体管接通表示1;当小电容没电时,晶体管断开表示0。但是充电后的小电容上的电荷很快就会丢失,所以需要不断地进行“刷新”。,所谓刷新,就是给DRAM的存储单元充电。在存储单元刷新的过程中,程序不能访问它们,在本次访问后,下次访问前,存储单元又必须进行刷新。 所谓内存具有多少纳秒(ns),就是指它的刷新时间。由于电容的充、放电需要时间,所以DRAM的读写时间远远慢于SRAM,其平均读写时间在60-120ns,但由于它

7、结构简单,所用的晶体管数仅是SRAM的四分之一,实际生产时集成度很高,成本也大大低于SRAM,所以DRAM的价格也低于SRAM,适合作大容量存储器。所以主内存通常采用动态DRAM,而高速缓冲存储器(Cache)则使用SRAM。 内存还应用于显卡、声卡及CMOS等设备中,用于充当设备缓存或保存固定的程序及数据。,4.1.2 内存的单位和主要性能指标,1.内存的单位: 存储器是具有“记忆”功能的设备,它用具有两种稳定状态的物理器件来表示二进制数码“0”和“1”,这种器件称为记忆元件或记忆单元。记忆元件可以是磁芯、半导体触发器、MOS电路或电容器等。位(bit)是二进制数的最基本单位,也是存储器存储

8、信息的最小单位,8位二进制数称为一个字节(Byte),可以由一个字节或若干个字节组成一个字(Word),字长等于运算器的位数。若干个记忆单元组成一个存储单元,大量的存储单元的集合组成一个存储体(Memory Bank)。为了区分存储体内的存储单元,必须将它们逐一进行编号,称为地址。地址与存储单元之间一一对应,且是存储单元的唯一标志。应注意存储单元的地址和它里面存放的内容完全是两回事。,位(bit) 位(bit,常用b表示)是二进制数的最基本单位,也是存储器存储信息的最小单位。如十进制中的14在计算机中就是用1110来表示,1110中的一个0或一个1就是一个比特。 字节(Byte) 8位二进制数

9、称为一个字节(B),内存容量即是指具有多少字节,字节是微机中最常用的单位。一个字节等于8个比特,即1B=8b。 存储器可以容纳的二进制信息量称为存储量。在微机中,凡是涉及到数据量的多少时,用的单位都是字节,内存也不例外。不过在数量级方面与普通的计算方法有所不同,1024字节为1KB,而不是通常的1000为1K,1024KB为1MB,更高数量级用1GB=1024MB表示。目前而言,一般微机的内存大小都以“MB”(有时也省略B)作为基本的计数单位。,内存的单位换算 微机的内存容量都很大,一般都以千字节、百万字节、十亿字节或更大的单位来表示。常用的内存单位及其换算如下: 千字节(KB, Kilo B

10、yte):1KB=1024B 百万字节 (MB, Mega Byte):1MB=1024KB 十亿字节(GB, Giga Byte):1GB=1024MB 兆兆字节(TB, Tera Byte):1TB=1024GB 各个单位的关系如下: 1TB=1024GB =10241024MB =102410241024KB =1024102410241024B =10241024102410248bit,2.内存的主要性能指标:,存取周期 内存的速度用存取周期来表示。单位为ns,这个时间越短,速度就越快,也就标志着内存的性能越高。内存的速度一般为6ns、7ns、8ns、10ns。 数据宽度和带宽 内存

11、的数据宽度是指内存同时传输数据的位数,以位(bit)为单位。内存带宽指内存的数据传输速率。,容量 每个时期内存条的容量都分为多种规格,比如早期的30线内存条有256KB、1MB、4MB等容量,后来72线的EDO内存有4MB、8MB、16MB等容量,目前流行的168线内存常见的内存容量有128MB、256MB、512MB。 内存电压 早期的FPM内存和EDO内存均使用5V电压,而SDRAM使用3.3V电压,DDR SDRAM和RDRAM使用2.5 V电压。DDR内存工作电压从DDR的2.5V降到1.8V。,内存的“线”数 就是指内存条与主板插接时有多少个接触点,这些接触点就是“金手指”,有30线

12、、72线和168线。30线内存条的数据宽度为8bit;72线内存条的数据宽度为32bit;168线内存条的数据宽度为64bit。 一般主板的存储器安装插座分为几个组(BANK),每个组中有2-4个存储器安装插座,可安装2-4个存储器条。286和386SX及486SLC类CPU只有16位数据线,因此,使用30线的内存条时,由于每条可以提供8位有效数据,所以系统主板的存储器条安装数据量通常为2的倍数。386DX和486DX微处理器有32位数据线,一次要存取32位数据,则用30线内存条时,需要安装4的倍数;如果主板上安装的是72线的内存条插座,由于72线的内存条一次就可以提供32位有效数据,所以只安

13、装一条也能正常工作。,SPD SPD (Serial Presence Detect) 是1个8针的EEPROM芯片,容量为256字节,里面主要保存了该内存条的相关资料,如容量、芯片的厂商、内存模组的厂商、工作速度、是否具备ECC校验等。SPD的内容一般由内存模组制造商写入。支持SPD的主板在启动时自动检测SPD中的资料,并以此设定内存的工作参数,使之以最佳状态工作,更好地确保系统的稳定。,时钟频率f、时钟周期TCK 时钟频率代表了DRAM所能稳定运行的最大频率,支持时钟频率越高的内存,其性能也越出众。 对于SDRAM而言,可分为PC66、PC100、PC133规范,分别表示可在66-133M

14、Hz的时钟频率下稳定运行。DDR内存的基准时钟频率为200MHz、266MHz,333MHz、400 MHz、533 MHz。RDRAM基准时钟频率为600MHz、700MHz和800MHz。 内存的时钟周期TCK由时钟频率决定,TCK=1/f,例如对于100MHz的系统来说,一个系统时钟周期为10ns。,CAS的延迟时间 CL CAS的延迟时间是指纵向地址脉冲的反应时间,也是在一定频率下衡量支持不同规范的内存重要标志之一,用CAS Latency (CL) 指标来衡量。SDRAM能够运行在CAS反应时间CL=2或3模式,也就是说它们读取数据所延迟的时间既可以是两个时钟周期,也可以是三个时钟周

15、期。我们可以把这个性能写入SDRAM的EEPROM中,这样PC的BIOS会检查此项内容,并且以CL=2模式这一较快的速度运行。 存取时间、CAS反应时间等性能指标是互相制约的。换句话说,当你有较快的存取时间,你就必须牺牲CAS反应时间的性能。因此,评估和比较SDRAM的性能时,我们必须综合考虑以上指标,不能仅从芯片上所刻的6、7、8或10来评价。,下面是一个评估SDRAM性能的简单例子。 对于100MHz的系统来说,一个系统时钟周期为10ns。 粗略计算一下:读取数据的总延迟时间=CAS 延迟 存取时间。 例如:现代PC100 SDRAM,存取时间为8ns,CL=2 模式。因此,总的延迟时间为

16、2周期存取时间=210ns8ns=28 ns 如果SDRAM运行在CL=3模式下,存取时间为6ns。这样,总的时间延迟为=310ns6ns=36ns 显然,当SDRAM运行在CL=2模式下,其速度确实快于CL=3模式。,ECC ECC(Error Checking and Correcting) 功能,指内存具备错误修正码的功能。它使得内存在传输数据的同时,在每笔资料上增加一个检查位元,以确保资料的正确性,若有错误发生,还可以将它加以修正并继续传输,这样不至于因为错误而中断。 奇偶校验(Parity) 非奇偶校验内存的每个字节只有8位,若它的某一位存储了错误的值,就会使其中存储的数据发生改变而

17、导致应用程序发生错误。而奇偶校验内存在每一字节(8位)外又额外增加了一位作为错误检测之用。那些Parity检测到错误的地方,ECC可以纠正错误。,内存的封装 BLP:(Bottom Leaded Plastic底部引出塑封技术),其芯片面积与封装面积之比大于1:1.1,符合CSP(Chip Size Package)封装规范。不仅高度和面积极小,而且电气特性得到了进一步的提高。相比之下,这种封装技术的制造成本也并不算高,它广泛应用于SDRAM、RDRAM、DDR等内存制造上。 uBGA:(Micro Ball Grid Array微型球栅阵列封装),其芯片面积与封装面积之比大于1:1.14,尤

18、其适合工作于高频状态下的RDRAM,但制造成本极高昂,目前主要用于RDRAM。 TinyBGA: (Tiny BALL Grid Array小型球栅阵列封装),其芯片面积与封装面积之比不小于1:1.14,是KingMax的专利,属于BGA封装技术的一个分支。KingMax采用这种封装形式。 TOSP II:(Thin Small Outline Package薄型小尺寸封装),目前广泛应用于SDRAM内存的制造上,但是随着时间的推移和技术的进步,TOSP II已越来越不适用于高频、高速的新一代内存。目前市场上的内存产品中,GL2000千禧条、HY等内存采用这种封装方式。,4.1.3主流内存,4

19、86和早期Pentium时代普遍使用的内存是FPM (Fast Page Mode RAM,快速页面模式随机存取存储器),它每隔3个时钟脉冲周期传送一次数据,72线、5V电压、32bit数据宽度,速度基本都在60ns以上。 后来使用EDO (Extended Data Out RAM,扩展数据输出随机存取存储器) 内存,EDO内存每隔两个时钟脉冲周期传输一次数据,大大地缩短了存取时间,使存取速度提高30%。EDO内存有72线和168线之分,速度达到60ns。EDO内存多用于早期的Pentium主板上。 现在市场上用于个人电脑的内存主要有三大类,一种是SDRAM,一种是目前主流的DDR内存,还有

20、一种是RDRAM。这三种内存都是DRAM。,1 SDRAM SDRAM(Synchronous DRAM 同步动态随机存储器)是现在常见的内存之一。SDRAM如其名字所示,它是同步的,也就是其工作速度与系统总线速度是同步的。SDRAM内存是根据其性能来进行标称的,比如PC100和PC133就是依据SDRAM内存的运行频率来进行划分的。现在内存运行的频率都比较快,单位都是MHz (兆赫兹)。SDRAM的主流规范是PC133,也就是说这是运行在133 MHz的SDRAM。我们简单地计算一下,133MHz就意味着每秒运行133百万次,那么每次的运行时间就是差不多7.5纳秒。这里的7.5纳秒就是内存的

21、一个时钟周期,在内存里面操作花费的时间都是时钟周期的整数倍,加快内存的时钟频率也就是缩短了内存的时钟周期,比如平时需要两个周期才能完成的工作,现在虽然还是要两个时钟周期,但由于内存时钟频率的加快,所花费的时间就少了很多了,我们直接能感受到的就是计算机的运行速度变快了。,2 DDR SDRAM DDR SDRAM (Double Date Rate SDRAM,双倍速率SDRAM)。看名字就知道DDR其实也是SDRAM的一种。DDR内存采用了双时钟差分信号等技术,使其在单个时钟周期内的上、下沿都能进行数据传输,所以具有比SDRAM多一倍的传输速率和内存带宽。 可以通过内存条的金手指的“缺口”进行

22、辨别,DDR只有一个缺口,而SDRAM有两个缺口。,DDR的标称和SDRAM一样采用频率。现在DDR运行频率主要有100MHz、133MHz、166MHz、200MHz四种,由于DDR内存具有双倍速率传输数据的特性,因此在DDR内存的标识上采用了工作频率2的方法,也就是DDR200、DDR266、DDR333和DDR400。 DDR内存的标称还可以用其带宽来表示。内存带宽严格地说应该分为内存理论带宽和内存实际带宽这两种,这里讨论的是内存的理论带宽,它的计算公式是:内存带宽内存运行频率8Byte (64bit)。那么DDR266的内存就可以换算为2668Byte2128MB/s,所以DDR266

23、通常也被称为PC2100,同理DDR200是PC1600,而DDR333是PC2700。用内存的带宽来表示比用运行频率表示更能体现内存的性能,但是这里提及的都是理论带宽。,3 RDRAM RDRAM 存储器总线式动态随机存取存储器,也就是Rambus内存。RDRAM的运行频率比SDRAM和DDR要高了许多,从300MHz、600MHz、800MHz到10660MHz。因为其比较高的工作频率发热量自然不会小,因此RDRAM内存表面都贴上金属散热片。如图4-3所示,这就是我们在市场上常看到的RDRAM的样子。,RDRAM常见的型号是PC600、PC700、PC800三种,RDRAM可以像DDR一样

24、在时钟信号的上下沿都可以传输信息,但其数据通道接口带宽较低,只有16位。RDRAM和SDRAM、DDR相比最大优势在于可以提供更大的内存带宽。这里以PC800为例,它的实际运行频率为400MHz,而内存带宽为8002Byte1.6GB/s。现在RDRAM还支持双通道技术,也就是说我们可以用两根同等容量和速度的RDRAM配对使用,形成双通道架构,这样双通道的PC800 RDRAM的带宽就成了3.2GB/s了,这也是在Intel 850主板上RDRAM内存需要两条RDRAM内存同时使用的原因。 RDRAM因为其高频率可以获得更大的带宽,但它还是有它不足的地方。和SDRAM、DDR相比,RDRAM比

25、较大的延迟又在很大程度上削弱了它的优势。所以在需要大量数据传输的场合,RDRAM因为其带宽的优势,其性能更为优越;而在普通应用场合,因为零散数据比较多,潜伏周期较短的DDR SDRAM性能则占上风。,4.1.4 选购内存,明确用途 品牌与市场 认清标识、鉴别质量、防止假冒伪劣 注意保护,4.2 硬盘,4.2.1 硬盘的分类 微型计算机的硬盘可按盘径尺寸和接口类型进行分类 1 按盘径尺寸分类 硬盘产品按内部盘片分有:5.25、3.5、2.5和1.8英寸,后两种常用于笔记本及部分袖珍精密仪器中,目前台式机中使用最为广泛的是3.5英寸的硬盘。,2 按接口类型进行分类 硬盘与微机之间的数据接口,常用的

26、为三大类:SCSI接口、IDE接口和Serial ATA接口硬盘。 (1)IDE接口硬盘 IDE(Integrated Drive Electronics)接口的硬盘是目前市场中的主流产品。IDE的本意是指把控制器与盘体集成在一起的硬盘驱动器。 ATA(Advanced Technology Attachment)是最早的IDE标准的正式名称,IDE接口的硬盘由早期的ATA、ATA-2、ATA-3发展到今天的Ultra ATA133,而数据传输速率也由3.3 MB/s发展到133 MB/s。,(2)SCSI接口硬盘 SCSI(Small Computer System Interface)小型

27、计算机系统接口,最早研制于1979年。SCSI接口早期多用于服务器、工作站等级的电脑上。随着计算机技术的发展,现在它被完全移植到普通计算机上了。SCSI硬盘受SCSI卡的控制,虽然SCSI硬盘需要花费额外的价钱来购买SCSI控制卡配合使用,但是每块SCSI控制卡最多可以挂接15种不同的设备。 SCSI硬盘接口有三种,分别是50针、68针和80针。我们常见到硬盘型号上标有“N”“W”“SCA”,就是表示接口针数的。N即窄口(Narrow),50针;W即宽口(Wide),68针;SCA即单接头(Single Connector Attachment),80针。其中80针的SCSI盘一般支持热插拔。

28、 SCSI硬盘(或外围设备)的规格有:SCSI-1、SCSI-2、Fast SCSI、Wide SCSI、Ultra SCSI、Wide Ultra SCSI、Ultra 2 SCSI、Wide Ultra 2 SCSI、Ultra 320 SCSI等。,(3)Serial ATA接口硬盘 Serial ATA接口硬盘即串行ATA,它是一种完全不同于并行ATA的新型硬盘。串行ATA以连续串行的方式传送数据,一次只会传送一位数据。这样能减少ATA接口的针脚数目,使连接电缆数目变少,效率也会更高。Serial ATA仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同

29、时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点高、发展潜力大,Serial ATA 1.0定义的数据传输率可达150MB/s,这比目前最新的并行ATA133所能达到133MB/s的最高数据传输率还高,而Serial ATA 2.0的数据传输率将达到300MB/s,最终将实现600MB/s的最高数据传输率。Serial ATA的拓展性强,由于Serial ATA采用点对点的传输协议,所以不存在主从问题,这样每个驱动器不仅能独享带宽,而且使拓展SATA设备更加便利。,Serial ATA规范保留了多种向前兼容方式,在硬件方面,Serial ATA标准中定义了在串行A

30、TA普及之前,可用转换器提供同并行ATA设备的兼容性,转换器能把来自主板的并行ATA信号转换成串行ATA硬盘能够使用的串行信号。在软件方面,Serial ATA和并行ATA保持了软件兼容性,这意味着厂商丝毫也不必为使用Serial ATA而重写任何驱动程序和操作系统代码。,4.2.2 硬盘的结构和工作原理 4.2.2.1 硬盘的结构 1 外部结构 (1)固定面板 (2)控制电路板 (3)电源接口 (4)数据接口 (5)跳线,2 内部结构 (1)盘片和主轴组件 (2)浮动磁头组件 (3)磁头驱动机构 (4)前置控制电路,4.2.2.2 工作原理 硬盘驱动器的原理并不复杂,和我们日常使用的盒式录音

31、机的原理十分相似。磁头负责读取以及写入数据。硬盘盘片布满了磁性物质,这些磁性物质可以被磁头改变磁极,利用不同磁性的正反两极来代表电脑里的0与1,起到数据存储的作用。写入数据实际上是通过磁头对硬盘片表面的可磁化单元进行磁化,就象录音机的录音过程,不同的是,录音机是将模拟信号顺序地录制在涂有磁介质的磁带上,而硬盘是将二进制的数字信号以环状同心圆轨迹的形式,一圈一圈地记录在涂有磁介质的高速旋转的盘面上。读取数据时,把磁头移动到相应的位置读取此处的磁化编码状态,将磁粒子的不同极性转换成不同的电脉冲信号,再利用数据转换器将这些原始信号变成电脑可以使用的数据。,硬盘驱动器加电正常工作后,利用控制电路中的单

32、片机初始化模块进行初始化工作,此时磁头置于盘片中心位置,初始化完成后主轴电机将启动并以高速旋转,装载磁头的小车机构移动,将浮动磁头置于盘片表面的00道,处于等待指令的启动状态。当接口电路接收到微机系统传来的指令信号,通过前置放大控制电路,驱动音圈电机发出磁信号,根据感应阻值变化的磁头对盘片数据信息进行正确定位,并将接收后的数据信息解码,通过放大控制电路传输到接口电路,反馈给主机系统完成指令操作。结束硬盘操作或断电状态,在反力矩弹簧的作用下浮动磁头驻留到盘面中心。,4.2.3 硬盘的主要参数和性能指标,1 磁道和扇区 当磁盘旋转时,磁头若保持在一个位置上,则每个磁头都会在磁盘表面划出一个圆形轨迹

33、,这些圆形轨迹就叫做磁道。这些磁道用肉眼是根本看不到的,因为它们仅是盘面上以特殊方式磁化了的一些磁化区,磁盘上的信息便是沿着这样的轨道存放的。相邻磁道之间并不是紧挨着的,这是因为磁化单元相隔太近时磁性会产生相互影响,同时也为磁头的读写带来困难。一张1.44MB的3.5软盘,一面有80个磁道,而硬盘上的磁道密度则远远大于此值,通常一面有几百甚至上千个磁道。磁盘上的每个磁道被等分为若干个弧段,这些弧段便是磁盘的扇区,每个扇区可以存放512个字节的信息,磁盘驱动器在向磁盘读取和写入数据时,要以扇区为单位。,2 磁头数(Heads) 硬盘的磁头数与硬盘体内的盘片数目有关,由于每一盘片均有两个磁面,每面

34、都应有一个磁头,因此,磁头数一般为盘片数的两倍。 3 柱面(Cylinders) 硬盘通常由重叠的一组盘片(盘片最多为14片,一般均在1-10片之间)构成,每个盘面都被划分为数目相等的磁道,并从外缘的“0”开始编号,具有相同编号的磁道形成一个圆柱,称之为硬盘的柱面。磁盘的柱面数与一个盘面上的磁道数是相等的。,4 容量 格式化后硬盘的容量由3个参数决定:硬盘容量=磁头数柱面数扇区数512 (字节)。硬盘的容量以兆字节(MB)或千兆字节(GB)为单位,1GB=1024MB。但硬盘厂商在标称硬盘容量时通常取1G=1000MB,因此在BIOS中或在格式化硬盘时看到的容量会比厂家的标称值要小。 5 单碟

35、容量 单碟容量就是硬盘盘体内每张磁碟的最大容量。每块硬盘内部有若干张盘片,所有盘片的容量之和就是硬盘的总容量。单碟容量越大,实现大容量硬盘也就越容易,寻找数据所需的时间也相对少一点。同时,单碟容量越大,硬盘的档次越高,性能越好,其故障率也越低,当然价格也越贵。,6交错因子 假设扇区是围绕着磁道依次编号的,磁头读取扇区上的数据分为两个阶段:读出数据,读后处理 (即传送至硬盘缓冲区的过程),当磁盘高速旋转,磁盘控制器读出1号扇区后准备转向2号扇区读数时,2号扇区的扇区头很有可能已经通过了磁头,使磁头停留在2号扇区的中部,甚至更远的地方。在这种情况下,磁盘控制器必须等待磁盘再次旋转一周,等2号扇区到

36、达时才能读取上面的数据,从而造成磁头大部分时间都在等待,数据传输率极低。解决的办法是扇区不要顺序连续编号,使原来的3号扇区编号为2,以此类推。相邻两号扇区之间间隔的扇区数就是“交错因子”或称为“间隔系数”,交错因子是在硬盘低极格式化时,由用户设置的。其设置值应符合厂商提供的说明。在某些低极格式化程序中提供了自动设置交错因子的功能,用户也可选择该功能由系统自动选择设置。现在的硬盘出厂时已经由生产厂家进行了低级格式化的工作,交错因子的设置也由厂家设为了最佳值,所以我们用不着再进行低级格式化了。,7 转速 转速是指硬盘盘片每分钟转动的圈数,单位是rpm.。转速是决定硬盘内部传输率的决定因素之一,它的

37、快慢在很大程度上决定了硬盘的速度,同时也是区别硬盘档次的重要标志。硬盘的转速多为5400rpm、7200rpm和10000rpm。7200rpm的硬盘已经逐步取代5400rpm的硬盘成为主流,10000rpm的硬盘多是面对高档用户的。,8 平均访问时间 平均访问时间(Average Access Time)是指磁头从起始位置到达目标磁道位置,并且从目标磁道上找到要读写的数据扇区所需的时间。平均访问时间体现了硬盘的读写速度,它包括了硬盘的寻道时间和等待时间,即:平均访问时间=平均寻道时间+平均等待时间。 硬盘的平均寻道时间(Average Seek Time)是指硬盘的磁头移动到盘面指定磁道所需

38、的时间。这个时间当然越小越好。目前主流硬盘的平均寻道时间通常在9ms左右。 硬盘的等待时间,又叫潜伏期(Latency),是指磁头已处于要访问的磁道,等待所要访问的扇区旋转至磁头下方的时间。这个时间当然越小越好。对圆形的硬盘来说,潜伏时间最多是转一圈所需的时间,最少则为0(不用转),一般来说,其Average Latency Time则为旋转半圈所需时间。目前的硬盘转速差不多为540O rpm(或 7200 rpm),故其Average Latency Time约等于(1/5400)6010002=5.6 ms,其余依此类推。硬盘转速7200 RPM,潜伏时间4.2 ms,硬盘转速1000 r

39、pm,潜伏时间3.0 ms。 平均访问时间通常在11ms到18ms之间。,9 传输速率 传输速率是指硬盘读写数据的速度,单位为兆字节每秒(MB/s)。硬盘数据传输速度包括了内部数据传输率和外部数据传输率。 内部传输率也称为持续传输率,指磁头至硬盘缓存间的最大数据传输率,一般取决于硬盘的盘片转速和盘片数据线性密度 (指同一磁道上的数据间隔度)。这项指标中常常使用Mb/S或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/s(兆字节/秒),就必须将Mbps数据除以8。例如最大内部数据传输率为131Mbps,但如果按MB/S计算就只有16.37MB/s。数据传输速度实际上达不到33MB/s,更

40、达不到66MB/s。因此硬盘的内部数据传输率就成了整个系统瓶颈中的瓶颈,只有硬盘的内部数据传输率提高了,再提高硬盘的接口速度才有实在的意义。 外部传输率(External Transfer Rate)也称为突发数据传输率(Burst Data Transfer Rate)或接口传输率,它标称的是系统总线与硬盘缓冲区之间的数据传输率,外部数据传输率与硬盘接口类型和硬盘缓存的大小有关。目前采用Ultra DMA133技术的硬盘,外部数据传输率可达133MB/s。,由于内部数据传输率才是系统真正的瓶颈,因此在购买时我们要分清这两个概念。一般来讲,硬盘的转速相同时,单碟容量大的内部传输率高;在单碟容量

41、相同时,转速高的硬盘的内部传输率高。应该清楚的是只有内部传输率向外部传输率接近靠拢,有效地提高硬盘的内部传输率才能对磁盘子系统的性能有最直接、最明显的提升。目前各硬盘生产厂家努力提高硬盘的内部传输率,除了改进信号处理技术、提高转速以外,最主要的就是不断地提高单碟容量以提高线性密度。由于单碟容量越大的硬盘线性密度越高,磁头的寻道频率与移动距离可以相应减少,从而减少了平均寻道时间,内部传输速率也就提高了。,10 缓存 缓存(Cache)的大小也是影响硬盘性能的一个重要指标。当硬盘接收到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者数个簇中的数据读到缓存中(因为硬

42、盘上数据存储时是比较连续的,所以读取的命中率是很高的),当CPU指令需要读取下一个或者几个簇中的数据的时候,磁头就不需要再次去读取数据,而是直接把缓存中的数据传输过去就行了,由于缓存的速度远远高于磁头的速度,所以能够达到明显改善性能的目的。显然缓存容量越大,硬盘性能越好。目前,主流硬盘的缓存一般是2MB。,11 盘表面温度 指硬盘工作时产生的温度使硬盘密封壳温度上升的情况。这项指标厂家并不提供,一般只能在各种媒体的测试数据中看到。硬盘工作时产生的温度过高将影响磁头的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更稳定的数据读、写性能。 12 MTBF (连续无故障时间) 指硬盘从开始运行到出

43、现故障的最长时间,单位是小时。一般硬盘的MTBF至少在30000小时以上。这项指标在一般的产品广告或常见的技术特性表中并不提供,需要时可专门上网到具体生产该款硬盘的公司网址中查询。,13 Ultra DSP (超级数字信号处理器) 应用Ultra DSP处理数学运算,其速度较一般CPU快1050倍,MAXTOR在硬盘厂商中率先引入了此项技术,用于缩短硬盘的平均寻道时间,采用Ultra DSP技术,单个的DSP芯片可以同时提供处理器及驱动接口的双重功能,以减少其它电子元件的使用,可大幅度提高硬盘的速度可靠性。 14 新型磁头技术 15 数据保护新技术,4.2.4 硬盘的生产厂商及编号,1 Max

44、tor硬盘 2希捷(Seagate) 3西部数据(Western Digital) 4IBM硬盘,4.2.5 选购硬盘,1 按需选购硬盘 2 发热及噪音问题 3 超频问题 4 保修问题,5 硬盘的编号 (1)Seagate (2)Maxtor (3)WD (4)三星,4.3 软盘驱动器与软盘,4.3.1 软盘、软盘驱动器 软盘是3.5英寸的,容量为1.44MB。 软盘靠写保护开关实现写保护。拨动小方块,打开方孔时则表示已经写保护;反之则表示未进行写保护,这时可以往软盘写入数据。写保护是个非常有用的功能,可防止误写操作,也避免计算机病毒的侵害。在使用时,最好将那些存有重要文件的软盘,如程序安装盘

45、和数据备份盘置于写保护状态。,软盘驱动器简称“软驱”。是驱动软盘旋转并同时向软盘写入数据或从软盘读出数据的设备。目前使用的都是3.5英寸软驱,与1.44MB的3.5英寸软盘配用。,1 软驱的优点 2 软驱的缺点,4.3.2 选购软盘驱动器和软盘,由于软盘驱动器的价格便宜,所以购买时最好选名牌产品,如SONY、NEC和三星等,这些厂家的软驱读盘能力强、噪音小、质量好。 购买软盘时应注意购买防静电、防霉能力强的软盘,另外软盘外表应具有明显标志,一目了然的磁盘写保护系统、易于粘贴撕下的标签纸、快门移动的自如性等,在选购时都应加以考虑。,4.4 光盘驱动器与光盘,4.4.1 光盘驱动器的外观,1 光驱

46、的正面: (1)防尘门和CD-ROM托盘。 (2)耳机插孔:连接耳机或音箱,可输出Audio CD音乐。 (3)音量控制按钮:调整输出的CD音乐音量大小。 (4)播放/跳道键:用于直接使用面板控制播放Audio CD。注意,有些牌子的光驱是没有这个键的。 (5)打开/关闭/停止键:控制光盘进出盒和停止Audio CD播放。 (6)读盘指示灯:显示光驱的运行状态。 (7)手动退盘孔:当光盘由于断电或其它原因不能退出时,可以用小硬棒插入此孔把光盘退出。注意,部分光驱无此功能。,2 光驱的背面: (1)电源线插座:用于光驱与电源连接的插座。 (2)主从跳线:光驱和硬盘一样也有主盘和副盘工作方式之分,

47、您可根据需要通过此跳线开关设置 (3)数据线插座:目前绝大部分的光驱跟硬盘一样使用IDE数据线。 (4)音频线插座:此插座通过音频线和声卡相连。,4.4.2 光盘驱动器的结构和工作原理,1 光盘驱动器的结构 光驱(CD-ROM)的内部主要由机芯及启动机构组成,整个机芯包括以下部分 (1)激光头组件:包括激光头、聚焦透镜等组成部分,配合齿轮机构和导轨等机械部分,在通电状态下根据系统信号确定并读取光盘数据,然后将数据传输到系统。 (2)主轴马达:光盘运行的驱动力,在光盘读取过程的高速运行中提供数据定位功能。 (3)光盘托架:光驱在开启和关闭状态下的光盘承载体。 (4)启动机构:控制光盘托架的进出和

48、主轴马达的启动,加电运行时使包括主轴马达和激光头组件的伺服机构都处于半加载状态中。,2 光盘驱动器的工作原理,激光头是光驱的中心部件,光驱就是通过它来读取数据的。光驱在读取信息时,激光头会向光盘发出激光束,当激光束照射到光盘的凹面或非凹面时,反射光束的强弱会发生变化,光驱就根据反射光束的强弱,把光盘上的信息还原成为数字信息,即“0”或“1”,再通过相应的控制系统,把数据传给电脑。,在无光盘状态下,光驱加电后,激光头组件启动,光驱面板指示灯亮。激光头组件移动到主轴马达附近,并由内向外顺着导轨步进移动,最后回到主轴马达附近。激光头的聚焦透镜将向上移动4次搜索光盘,同时主轴马达也顺时针启动4次。然后

49、激光头组件复位,主轴马达停止运行,面板指示灯熄灭。 放入光盘后,激光头聚焦透镜重复搜索动作,找到光盘后主轴马达将加速运转。此时若读取光盘,面板指示灯将不停地闪动。步进电机带动激光头组件移动到光盘数据处,聚焦透镜将数据反射到接收光电管,再由数据带传送到系统。若停止读取光盘,激光头组件和马达仍将处于加载状态中,面板指示灯熄灭。不过,目前高速光驱在设计上都考虑到可以使主轴马达和激光头组件在40秒或几分钟后停止工作,直到重新读取数据。这样可有效地节能,并延长使用时间。,4.4.3 光盘驱动器的主要性能指标,1 数据传输速率 数据传输速率 (Data Transfer Rate) 即大家常说的倍速,是光驱最基本的性能指标,是指光驱在1秒内所能读取的最大数据量。早期的光驱数据传输率并不高,每秒钟只能传输150K字节(即150KB/s),即单速光驱。我们平时说的多少速光驱,就是以此为基准。例如,传输率为600KB/s的光驱称为四倍速光驱。目前市面上的主流光驱早已超过了40倍速,40或48倍速光驱每秒钟能读取6000KB和7200KB的数据。,2 平均寻道时间 平均寻道时间 (Average Access Time),是指光

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1