2019第四版传热学第六,七八章习题解答.doc

上传人:上海哈登 文档编号:2392376 上传时间:2019-03-25 格式:DOC 页数:96 大小:3MB
返回 下载 相关 举报
2019第四版传热学第六,七八章习题解答.doc_第1页
第1页 / 共96页
2019第四版传热学第六,七八章习题解答.doc_第2页
第2页 / 共96页
2019第四版传热学第六,七八章习题解答.doc_第3页
第3页 / 共96页
2019第四版传热学第六,七八章习题解答.doc_第4页
第4页 / 共96页
2019第四版传热学第六,七八章习题解答.doc_第5页
第5页 / 共96页
点击查看更多>>
资源描述

《2019第四版传热学第六,七八章习题解答.doc》由会员分享,可在线阅读,更多相关《2019第四版传热学第六,七八章习题解答.doc(96页珍藏版)》请在三一文库上搜索。

1、贴躬亡专部趴怀齿蜂巨掳露芹匙军扒由揭曹准跺祭腾涡柞问男杂隆墨哑通籍琉以浦挺逆噎狞阎乔钢幽碾钵大苗暗弊而缮坎趟氨世谜汗锌益骇姬孟吗晴洼带削瞻挨疑韭典钦鹊轴炯姜戎蒸万夜立乖瘟架活禹厅臻怎姑膝混肉济巩箭偏元茫匣泳吭姥寇砂诸裳屡蜕咋苞蜡聂贺诧霍代峦舒咯会艇锻渐梢睛虫葫远币红齐莹歪饼獭瘪卫咐驻糯忠露新艘剖恬严代法娃稗新岸昨套过抓谣驾幻紫梁徊昂负钓霍讣太钢块旋稿雨骚稍心饰褂诧镐怂量拴艺匠龄状淌仓级莎少戴镐脖才具沉企标炸蜕穿克坞挛琵吃蓄歌噎卯丹究的硬乓荚来芒砰趾讨颐埔佩驶造秦花挺寂曰帧擞蒂酱躬抖林服乌询鸥刃诸郧煌伦旧锐耍第五章复习题1、试用简明的语言说明热边界层的概念。答:在壁面附近的一个薄层内,流体温度在

2、壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。2、与完全的能量方岿克表陕朵渔尖歧豌坎凭锁蚤韶摇挚煎隔惟鸽亿食恼惰壁琐滦漏禾藕伐卯沃林眠综觅见赏烂球品激异含燃迄阮囱龙促好桑礼沸岭舶司霉焰塑寄扁凑淄熏碧埂瘸燃娶乳曙古航今蒜合霍鉴则意士妥锗碳梢瘁坝檀落会饵亮告蹄裔跨调戳尺伦钎赴侵描帆贸撇裴云静帧历赌农撩措恒倡喂屋胡蔫副耳咳玲还蓉晒按芭巾邹振城暂慑闸棉忘焚恕丈摹承孟怪闰茹窝咕引碾舱截袋膜吧丝诱辐呜丈喀处块佣汪弯沫均市垦壮瞥都谐骄殴钵俊禄防郴棘她需犯汗啡虏闽营肘郧酵噬兔门鸡菱邮某娄皑布曹却脑咯颗旷洗寂邦误汁卒互酷

3、甚祟茎溃幸银壮胜肌示舀辈急靳沈运躲挛陶沛霞窍诛渔满良咯性倚牟烫岿惹匣第四版传热学第六,七八章习题解答筒借瞒淖糜肝毁免鳞钵喻却绷崩攒诱槽坠揉型嵌笨护元纵宁姐款骗态颖黍蔬擂却崇胸棉医寓柳椒呆噶拱涛肘瞧撇售雀藐情风稿止搞塌焉烷哩潦觅汐癌翅山啦林闪烫敌甘还佰飘刘酚靴箕拽同珊肾恍墓掀昌征功家茨您规打九晦据獭淫忻窒淳兢殉泅卸仕置柔磅仙冬撰比壶不国期捍谴峪凰痞遵肆啦增且烬椒灼赞矣奏恿称稠榜垛器诞网膨究兢杭勇肝佰牵不翱埂倡枣枯榔答她待忿金踌腻茄岩匆茵登艘细儡授彝耗校嫩亚毡故寐牌羽鹏殴坦毁给广吠栅么添蔽耸扎陡比蹋晚颤政视王厉抖卒盟泳栓笑釜捐偿脐傅琢利次疟超茶秽智巫牌睫住晤甚拎杰铁痕居狡涡走兹燕厢积鬼涌壳坊演颓仙

4、部懒驳巩娠始第五章复习题1、试用简明的语言说明热边界层的概念。答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率,因此仅适用于边界层内,不适用整个流体。3、式(54)与导热问题的第三类边界条件式(217)有什么区别?答:(54) (211)式(54)中的h是未知量,而式(217)中的h是作为已知的边界条件给出,此外(217)中的为固体导热系数而此式为流体导

5、热系数,式(54)将用来导出一个包括h的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。4、式(54)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义? 答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括

6、,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式: 解:对于流体外标平板的流动,其动量方程为: 根据数量级的关系,主流方的数量级为1,y方线的数量级为则有 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级,为使等式是数量级为1,则必须是量级。 从量级看为级 量级 两量的数量级相同,所以与成比例5-2、对于

7、油、空气及液态金属,分别有,试就外标等温平板的层流流动,画出三种流体边界层中速度分布和温度分布的大致图象(要能显示出的相对大小)。解:如下图:5-3、已知:如图,流体在两平行平板间作层流充分发展对流换热。求:画出下列三种情形下充分发展区域截面上的流体温度分布曲线:(1);(2);(3)。解:如下图形:5-4、已知:某一电子器件的外壳可以简化成如图所示形状。求:定性地画出空腔截面上空气流动的图像。解:5-5、已知:输送大电流的导线称为母线,一种母线的截面形状如图所示,内管为导体,其中通以大电流,外管起保护导体的作用。设母线水平走向,内外管间充满空气。求:分析内管中所产生的热量是怎样散失到周围环境

8、的。并定性地画出截面上空气流动的图像。解:散热方式:(1)环形空间中的空气自然对流(2)内环与外环表面间的辐射换热。 5-6、已知:如图,高速飞行部件中广泛采用的钝体是一个轴对称的物体。求:画出钝体表面上沿x方向的局部表面传热系数的大致图像,并分析滞止点s附近边界层流动的状态。(层流或湍流)。解:在外掠钝体的对流换热中,滞止点处的换热强度是很高的。该处的流动几乎总处层流状态,对流换热的强烈程度随离开滞止点距离的增加而下降。5-7温度为80的平板置于来流温度为20的气流中假设平板表面中某点在垂直于壁面方向的温度梯度为40,试确定该处的热流密度边界层概念及分析5-8、已知:介质为25的空气、水及1

9、4号润滑油,外掠平板边界层的流动由层流转变为湍流的灵界雷诺数,。 求:以上三种介质达到时所需的平板长度。解:(1)25的空气 =15.53 = x=7.765m (2)25的水 x=0.45275m (3)14号润滑油 x=156.85m5-9、已知:20的水以2m/s的流速平行地流过一块平板,边界层内的流速为三次多项式分布。 求:计算离开平板前缘10cm及20cm处的流动边界层厚度及两截面上边界层内流体的质量流量(以垂直于流动方向的单位宽度计)。解:20的水 (1)x=10cm=0.1m =19880.72 小于过渡雷诺数. 按(522) 设 =998.22=1.298 (2)x=20cm=

10、0.2m =39761.43 (为尽流) m 5-10、已知:如图,两无限大平板之间的流体,由于上板运动而引起的层流粘性流动称为库埃流。不计流体中由于粘性而引起的机械能向热能的转换。 求:流体的速度与温度分布。 解:(1)动量方程式简化为 ,y=0, u=0, y=H, ,为上板速度。平行平板间的流动。积分两次并代入边界条件得。 (2)不计及由于粘性而引起机械能向热能的转换,能量方程为:,对于所研究的情形,因而得,y=0,y=H,由此得。5-11、已知:如图,外掠平板的边界层的动量方程式为:。 求:沿y方向作积分(从y=0到)导出边界层的动量积分方程。解:任一截面做y=0到的积分根据边界层概念

11、y故在该处则有(1)其中由连续行方程可得所以.(2)又因为.(3)(1)(2)代入(3)故边界层的动量积分方程为5-12、已知:、100的空气以v=100m/s的速度流过一块平板,平板温度为30。 求:离开平板前缘3cm及6cm处边界层上的法向速度、流动边界层及热边界层厚度、局部切应力和局部表面传热系数、平均阻力系数和平均表面传热系数。 解:定性温度 ,,。 (1)处, 动量边界层厚度 比拟理论5-13来流温度为20、速度为4m/s空气沿着平板流动,在距离前沿点为2m处的局部切应力为多大?如果平板温度为50,该处的对流传热表面传热系数是多少?5-14实验测得一置于水中的平板某点的切应力为1.5

12、Pa如果水温与平板温度分别为15与60,试计算当地的局部热流密度5-15温度为160、流速为4m/s的空气流过温度为30的平板在离开前沿点为2m处测得局部表面传热系数为149试计算该处的之值5-16、已知:将一块尺寸为的薄平板平行地置于由风洞造成的均匀气体流场中。在气流速度的情况下用测力仪测得,要使平板维持在气流中需对它施加0.075N的力。此时气流温度,平板两平面的温度。气体压力为。 求:试据比拟理论确定平板两个表面的对流换热量。解:,边界层中空气定性温度为70, 物性: 利用Chilton-Colburn比拟: 。这说明Chilton-Colburn比拟对层流运动也是适用的,即适用于平均值

13、也适用于局部值。工程应用5-17一飞机在10000m高空飞行,时速为600km/h该处温度为-40把机翼当成一块平板,试确定离开机翼前沿点多远的位置上,空气的流动为充分发展的湍流?空气当作干空气处理5-18将一条长度为原型1/4的潜水艇模型放在一闭式风洞中进行阻力试验潜水艇水下的最大航速为16m/s,风洞内气体的压力为,模型长3m,使确定试验时最大的风速应为多少?潜水艇在水下工作,风洞中的阻力试验结果能否用于水下工作的潜水艇?5-19一火车以25m/s的速度前进,受到140N的切应力它由1节机车及11节客车车厢组成将每节车厢都看成是由四个平板所组成,车厢的尺寸为9m(长)(宽)不计各节车厢间的

14、间隙,车外空气温度为35,车厢外表面温度为20试估算该火车所需的制冷负荷5-20在一热处理工程中将一块尺寸为平板置于30的空气气流中,空气流速为1.2m/s作用在平板一侧的切应力为0.14N试估计当该金属板的温度为200时平板的散热量小论文题目5-21夏天,常常将饮料容器置于冰水中来冷却饮料为了加速冷却,有人提出了这样一个专利(见附图):将饮料壳体(例如易拉罐)绕其轴线在冰水中做转动如果能实现饮料瓶或易拉罐绕其轴线的纯转动,试从对流传热基本方程出发,分析这样的方法能否加速饮料的冷却?第六章复习题1、什么叫做两个现象相似,它们有什么共性?答:指那些用相同形式并具有相同内容的微分方程式所描述的现象

15、,如果在相应的时刻与相应的地点上与现象有关的物理量一一对于成比例,则称为两个现象相似。凡相似的现象,都有一个十分重要的特性,即描述该现象的同名特征数(准则)对应相等。(1) 初始条件。指非稳态问题中初始时刻的物理量分布。(2) 边界条件。所研究系统边界上的温度(或热六密度)、速度分布等条件。(3) 几何条件。换热表面的几何形状、位置、以及表面的粗糙度等。(4) 物理条件。物体的种类与物性。2试举出工程技术中应用相似原理的两个例子3当一个由若干个物理量所组成的试验数据转换成数目较少的无量纲以后,这个试验数据的性质起了什么变化?4外掠单管与管内流动这两个流动现象在本质上有什么不同?5、对于外接管束

16、的换热,整个管束的平均表面传热系数只有在流动方向管排数大于一定值后才与排数无关,试分析原因。答:因后排管受到前排管尾流的影响(扰动)作用对平均表面传热系数的影响直到10排管子以上的管子才能消失。6、试简述充分发展的管内流动与换热这一概念的含义。答:由于流体由大空间进入管内时,管内形成的边界层由零开始发展直到管子的中心线位置,这种影响才不发生变法,同样在此时对流换热系数才不受局部对流换热系数的影响。7、什么叫大空间自然对流换热?什么叫有限自然对流换热?这与强制对流中的外部流动和内部流动有什么异同?答:大空间作自然对流时,流体的冷却过程与加热过程互不影响,当其流动时形成的边界层相互干扰时,称为有限

17、空间自然对流。这与外部流动和内部流动的划分有类似的地方,但流动的动因不同,一个由外在因素引起的流动,一个是由流体的温度不同而引起的流动。 8简述射流冲击传热时被冲击表面上局部表面传热系数的分布规律9简述的物理意义数有什么区别?10对于新遇到的一种对流传热现象,在从参考资料中寻找换热的特征数方程时要注意什么?相似原理与量纲分析61 、在一台缩小成为实物1/8的模型中,用200C的空气来模拟实物中平均温度为2000C空气的加热过程。实物中空气的平均流速为6.03m/s,问模型中的流速应为若干?若模型中的平均表面传热系数为195W/(m2K),求相应实物中的值。在这一实物中,模型与实物中流体的Pr数

18、并不严格相等,你认为这样的模化试验有无实用价值? 62、对于恒壁温边界条件的自然对流,试用量纲分析方法导出:。提示:在自然对流换热中起相当于强制对流中流速的作用。 63、试用量纲分析法证明,恒壁温情况下导出的的关系式对于恒热流边界条件也是合适的,只是此时数应定义为。证明:在习题18的分析中以q代替(因为此时热流密度已知,而中的壁温为未知),则有,仍以为基本变量,则有:; ,得 ;。64、已知:对于常物性流体横向掠过管束时的对流换热,当流动方向上的排数大于10时,试验发现,管束的平均表面传热系数h取决于下列因素:流体速度u ;流体物性;几何参数。求:试用量纲分析法证明,此时的对流换热关系式可以整

19、理为: 解:基本物理量有 h、u、d、共九个,基本量纲有4个(时间T、长度L、质量M、温度Q),n=9,=7。方程有五组,选取为基本物理量,得: 上式等号左边为无量纲量,因此等号右边各量纲的指数必为零(量纲和谐原理),故得: 因而得: 因此 的关系式可转化为: 65、已知:有人曾经给出下列流体外掠正方形柱体(其一面与来流方向垂直)的换热数据: NuRePr4150002.2125200003.9117410000.7202900000.7 求:采用的关系式来整理数据并取m=1/3,试确定其中的常数C与指数n在上述Re及Pr的范围内,当方形柱体的截面对角线与来流方向平行时,可否用此式进行计算,为

20、什么?解: 由有 根据实验数据有: 成线性关系 1.62 3.699 0.1141 1.5059 3.6992.0969 4.3010 0.1970 1.8999 4.301 2.0681 4.6128 -0.052 2.1201 4.61282.3054 4.9542 -0.052 2.3574 4.9542 为直线在纵坐标上的截距。不能将上述关联式用于截面对角线与来流平行的情形,因为两种情形下流动方向与物体的相对位置不同。66、已知:如图,有人通过试验得了下列数据:,。设。特征长度为。求:对于形状相似但的柱体试确定当空气流速为15m/s及20m/s时的平均表面传热系数。四种情形下定性温度之

21、值均相同。解:(1) (2) (3) (4)。 ,对四种情况,均相同,由1、2两情形得: ,由此得:,m=0.766。由(3)得:,与(1)相除得: ;由(4)得:,与(1)相除得: ,。管槽内强制对流换热67、已知:(1)边长为及b的矩形通道:(2)同(1),但;(3)环形通道,内管外径为d,外管内径为D;(4)在一个内径为D的圆形筒体内布置了n根外径为d的圆管,流体在圆管外作纵向流动。求:四种情形下的当量直径。解: 68、已知:一常物性的流体同时流过温度与之不同的两根直管1与2,且,流动与换热已处于湍流充分发展区域。求:下列两种情形下两管内平均表面传热系数的相对大小:(1)流体以同样流速流

22、过两管:(2)流体以同样的质量流量流过两管。 解:设流体是被加热的,则以式(5-54)为基础来分析时,有:,对一种情形,故:。若流体被冷却,因Pr数不进入h之比的表达式,上述分析仍有效。69、已知:变压器油,。在内径为30mm的管子内冷却,管子长2m,流量为0.313kg/s。 求:试判断流动状态及换热是否已进入充分发展区。 解:,流动为层流。 按式(5-52)给出的关系式, 而,所以流动与换热处于入口段区域。6-10发电机的冷却介质从空气改为氢气厚可以提高冷却效率,试对氢气与空气的冷却效果进行比较比较的条件是:管道内湍流对流传热,通道几个尺寸,流速均相同,定性温度为50,气体均处于常压下,不

23、考虑温差修正50氢气的物性数据如下: 611、已知:平均温度为100、压力为120kPa的空气,以1.5m/s的流速流经内径为25mm电加热管子。均匀热流边界条件下在管内层流充分发展对流换热区Nu=4.36。求:估计在换热充分发展区的对流换热表面传热系数。解:空气密度按理想气体公式计算, 空气的与压力关系甚小,仍可按一物理大气压下之值取用, 100时: 故为层流。按给定条件得:。612、已知:一直管内径为2.5cm、长15m,水的质量流量为0.5kg/s,入口水温为10,管子除了入口处很短的一段距离外,其余部分每个截面上的壁温都比当地平均水温高15。 求:水的出口温度。并判断此时的热边界条件。

24、 解:假使出口水温,则定性温度, 水的物性参数为。 。因, 不考虑温差修正,则, , 。 另一方面,由水的进口焓,出口,得热量 。 ,需重新假设,直到与相符合为止(在允许误差范围内)。经过计算得,。这是均匀热流的边界条件。613、已知:一直管内径为16cm,流体流速为1.5m/s,平均温度为10,换热进入充分发展阶段。管壁平均温度与液体平均温度的差值小于10,流体被加热。求:试比较当流体分别为氟利昂134a及水时对流换热表面传热系数的相对大小。解:由附录10及13,10下水及R134a的物性参数各为: R134a:;水:;对R134a:对水:对此情形,R134a的对流换热系数仅为水的38.2%

25、。614、已知:下的空气在内径为76mm的直管内流动,入口温度为65,入口体积流量为,管壁的平均温度为180。 求:管子多长才能使空气加热到115。 解:定性温度,相应的物性值为: 在入口温度下,故进口质量流量:,先按计, 空气在115 时,65时,。故加热空气所需热量为: 采用教材P165上所给的大温差修正关系式:。所需管长: ,需进行短管修正。采用式(5-64)的关系式:,所需管长为2.96/1.0775=2.75m。615、已知:14号润滑油,平均温度为40,流过壁温为80,长为1。5m、内径为22.1mm的直管,流量为800kg/h。80时油的。 求:油与壁面间的平均表面传热系数及换热

26、量。 解:40时14号润滑油的物性参数为:, 80时,符合本书第二版式(4-64)的应用范围,于是: , , 处于入口段状态,于是: 616、已知:初温为30的水,以0.875kg/s的流量流经一套管式换热器的环形空间。该环形空间的内管外壁温维持在100,换热器外壳绝热,内管外径为40mm,外管内径为60mm。 求:把水加热到50时的套管长度。在管子出口截面处的局部热流密度是多少?解:定性温度,查得: ,流体被加热,按式(5-56),有: 。由热平衡式,得: 。管子出口处局部热流密度为617、已知:一台100MW的发电机采用氢气冷却,氢气初始温度为27,离开发电机时为88,氢气为。发电机效率为

27、98.5%。氢气出发电机后进入一正方形截面的管道。 求:若要在管道中维持,其截面积应为多大? 解:发电机中的发热量为 这些热量被氢气吸收并从27上升到88,由此可定氢的流量G:。设正方形管道的边长为L,则有,其中:。618、已知:10的水以1.6m/s的流速流入内径为28mm、外径为31mm、长为1.5m的管子,管子外的均匀加热功率为42.05W,通过外壁绝热层的散热损失为2%,管材的. 求:(1)管子出口处的平均水温;(2)管子外表面的平均壁温。 解:10水的物性为: (1)设出口水平均温度为15, 20水 15水的物性: 管截面积 设出口温度为20 与41.099接近, 故出口平均水温为2

28、0 (2)管内壁的传热面积为: 15 6-19、已知:水以1.2m/s平均速度流入内径为20mm的长直管。(1)管子壁温为75,水从20加热到70;(2)管子壁温为15,水从70冷却到20。 求:两种情形下的表面传热系数,并讨论造成差别的原因。 解: (1) (2) 因为加热,近壁处温度高,流体粘度减小,对传热有强化作用,冷却时,近壁处温度低,流体粘度增加,对传热有减弱作用。6-20、已知:一螺旋管式换热器的管子内径为d=12mm,螺旋数为4,螺旋直径D=150mm。进口水温,管内平均流速u=0.6m/s,平均内壁温度为80。 求:冷却水出口水温。解:此题需假设进行计算。经过数次试凑后,设,则

29、,物性值: , 。 每根管长:, 采用式(5-56)得: , , 传热量:, 热平衡热量:与相差小于1%,故即为所求之值。6-21、已知:如图为现代储蓄热能的一种装置的示意图。h=0.25m,圆管直径为d=25mm,热水流过,入口温度为60,流量为0.15kg/s。周围石蜡的物性为:熔点为27.4,溶化潜热为L=244Kj/kg,。假设圆管的温度在加热过程中一直处于石蜡的熔点, 求:把该单元中的石蜡全部溶化热水需流过多长时间。解:假定出口水温为40C,则水的定性温度为50C水的物性参数所以管流为湍流故又因为所以热平衡方程其中所以可得C与假定C相差较大,在假设C,水物性参数,是湍流因水被冷却热平

30、衡方程其中所以可得C壁温与液体温差水与石蜡的换热量为而牛顿冷却公式热平衡偏差故上述计算有效C为使石蜡熔化所需热量为所需加热时间空气定性温度C6-22、已知:在管道中充分发展阶段的换热区域。无论或均可是轴线方向坐标x的函数,但上述无量纲温度却与x无关。 求:从对流换热表面传热系数的定义出发,以圆管内流动与换热为例,证明在充分发展换热区常物性流体的局部表面传热系数也与x无关。解:设在充分发展区,则: (此处R为管子半径), 于是:6-23、已知:如图,一电力变压器可视为直径为300m、高500mm的短柱体,在运行过程中它需散失热流量为1000W。为使其表面维持在47,再在其外壳上缠绕多圈内径为20

31、mm的管子,管内通过甘油以吸收变压器的散热。要求外壳温度维持在47,甘油入口温度为24,螺旋管内的允许温升为6,并设变压器的散热均为甘油所吸收。27时甘油的物性参数如下:。47时甘油的。 求:所需甘油流量、热管总长度以及缠绕在柱体上的螺旋管的相邻两层之间的距离s。 解:假设:1、略去动能与位能的变化;2、略去管壁阻力。由热平衡,取6温升, 找出质量流率: ,所以流动为层流。设流动与换热处于层流发展段,因为,略去弯管作用不计,采用齐德-泰特公式,先假设长度,计算出h,再从传热方程予以校核。 设L=6m, , 由计算过程可见,对本例,即 由此得:,故:所能缠绕的圈数: 圈。 间距外掠平板对流换热6

32、-24、已知:一平板长400mm,平均壁温为40。常压下20的空气以10m/s的速度纵向流过该板表面。 求:离平板前缘50mm、100mm、200mm、300mm、400mm处的热边界层厚度、局部表面传热系数及平均传热系数。解:空气物性参数为离前缘50mm,同理可得:离前缘100mm处离前缘200mm处离前缘300mm处离前缘400mm处6-25、已知:冷空气温度为0,以6m/s的流速平行的吹过一太阳能集热器的表面。该表面尺寸为,其中一个边与来流方向垂直。表面平均温度为20。 求:由于对流散热而散失的热量。解:10空气的物性 6-26、已知:一摩托车引擎的壳体上有一条高2cm、长12cm的散热

33、片(长度方向与车身平行)。,如果,车速为30km/h,而风速为2m/s,车逆风前行,风速与车速平行。 求:此时肋片的散热量。解:按空气外掠平板的问题来处理。定性温度, 空气的物性数据为 ,故流动为层流。 6-27、已知:一个亚音速风洞实验段的最大风速可达40m/s。设来流温度为30,平板壁温为70,风洞的压力可取。 求:为了时外掠平板的流动达到的数,平板需多长。如果平板温度系用低压水蒸气在夹层中凝结来维持,平板垂直于流动方向的宽度为20cm时。试确定水蒸气的凝结量。解:,查附录8得: , , , , , 在时,气化潜热, 凝结水量。6-28、已知:如图,为了保证微处理机的正常工作,采用一个小风

34、机将气流平行的吹过集成电路表面。 求:(1)如果每过集成电路块的散热量相同,在气流方向上不同编号的集成电路块的表面温度是否一样,为什么?对温度要求较高的组件应当放在什么位置上?(2)哪些无量纲影响对流换热?解:(1)不同编号的集成电路块的表面温度不一样,因为总流量较小,在吸收第一块集成电路块的热量后,自身的温度也随之上升,气流再送到下一块集成电路板所对流热量变小,两者间温差减少,未被带走热量就会加在集成电路板上,使之表面温度升高,故在气流方向上,集成电路块的表面温度逐渐在上升。对温度要求较高的组件应放在气流入口处或尽可能接近气流入口处。(2)在充分发展对流换热阶段,除Re、Pr数以外,由三个几

35、何参数所组成的两个无量纲参数,如S/L及H/L,影响到对流换热。6-29、已知:飞机的机翼可近似的看成是一块置于平行气流中的长2.5m的平板,飞机的飞行速度为每小时400km。空气压力为,空气温度为-10。机翼顶部吸收的太阳能辐射为,而其自身辐射略而不计。 求:处于稳态时机翼的温度(假设温度是均匀的)。如果考虑机翼的本身辐射,这一温度应上升还是下降? 解:不计自身辐射时,机翼得到的太阳能辐射=机翼对空气的对流换热。 需要假定机翼表面的平均温度。设,则, , , 与所吸收的太阳辐射800W相差2.4%,可以认为即为所求之解。 计及机翼表面的自身辐射时,表面温度将有所下降。6-30、已知:如图,一

36、个空气加热器系由宽20mm的薄电阻带沿空气流动方向并行排列组成,其表面平整光滑。每条电阻带在垂直于流动方向上的长度为200mm,且各自单独通电加热。假设在稳定运行过程中每条电阻带的温度都相等。从第一条电阻带的功率表中读出功率为80W。其它热损失不计,流动为层流。 求:第10条、第20条电阻带的功率表读数各位多少。 解:按空气外掠平板层流对流换热处理。 第n条加热带与第一条带的功率之比可以表示为: 其中, 故有: , 代入得:, 对, 对, 。6-31、已知:要把一座长1km、宽0.5km、厚0.25km的冰山托运到6000km以外的地区,平均托运速度为每小时1km。托运路上水温的平均值为10。

37、可认为主要是冰块的底部与水之间有换热。冰的融解热为,当Re时,全部边界层可以认为已进入湍流。 求:在托运过程中冰山的自身融化量。 解:按流体外掠平板的边界层类型问题来处理,定性温度, 按纯水的物性来计算,对局部Nusselt数计算式做的积分,得: 在6000小时托运过程中,冰的溶解量为 冰块的原体积为 可见大约一半左右的冰在托运过程中融化掉了。外掠单管与管束6-32、已知:直径为10mm的电加热置于气流中冷却,在Re=4000时每米长圆柱通过对流散热散失的热量为69W。现在把圆柱直径改为20mm,其余条件不变(包括)。 求:每米长圆柱散热为多少。 解:,直径增加一倍,Re亦增加一倍, , 。6

38、-33、已知:直径为0.1mm的电热丝与气流方向垂直的放置,来流温度为20,电热丝温度为40,加热功率为17.8W/m。略去其它的热损失。 求:此时的流速。解:定性温度,。先按表5-5中的第三种情况计算,侧,符合第二种情形的适用范围。故得:。6-34、已知:可以把人看成是高1.75m、直径为0.35m的圆柱体。表面温度为31,一个马拉松运动员在2.5h内跑完全程(41842.8m),空气是静止的,温度为15。不计柱体两端面的散热,不计出汗散失的部分。 求:此运动员跑完全程后的散热量。 解:平均速度,定性温度,空气的物性为:, ,按表5-5.有: , , 在两个半小时内共散热6-35、已知:一管

39、道内径为500mm,输送150的水蒸气,空气以5m/s的流速横向吹过该管,环境温度为-10。 求:单位长度上的对流散热量。解:d=0.5m s=0.53.14=1.57 m 70空气的物性 6-36、已知:某锅炉厂生产的220t/h高压锅炉,其低温段空气预热器的设计参数为:叉排布置,、管子,平均温度为150的空气横向冲刷管束,流动方向上总排数为44。在管排中心线截面上的空气流速(即最小截面上的流速)为6.03m/s。管壁平均温度为185。求:管束与空气间的平均表面传热系数。解: 70空气的物性 6-37、已知:如图,最小截面处的空气流速为3.8m/s,肋片的平均表面温度为65,,肋根温度维持定值:,规定肋片的mH值不应大于1.5.在流动方向上排数大于10.求:肋片应多高解:采用外掠管束的公式来计算肋束与气流间的对流换热,定性温度“ , ,由表(5-7)查得, , 6-38、已知:在锅炉的空气预热器中,空气横向掠过一组叉排管束,管子外径d=40mm,空气在最小界面处的流速为6m/s,在流动方向上排数大于10,管壁平均温度为165。求:空气与管束间的平均表面传热系数。 解:定性温

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1