2019年硅片所用氯化金 传感器资料.doc

上传人:上海哈登 文档编号:2491531 上传时间:2019-04-03 格式:DOC 页数:7 大小:46.21KB
返回 下载 相关 举报
2019年硅片所用氯化金 传感器资料.doc_第1页
第1页 / 共7页
2019年硅片所用氯化金 传感器资料.doc_第2页
第2页 / 共7页
2019年硅片所用氯化金 传感器资料.doc_第3页
第3页 / 共7页
2019年硅片所用氯化金 传感器资料.doc_第4页
第4页 / 共7页
2019年硅片所用氯化金 传感器资料.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《2019年硅片所用氯化金 传感器资料.doc》由会员分享,可在线阅读,更多相关《2019年硅片所用氯化金 传感器资料.doc(7页珍藏版)》请在三一文库上搜索。

1、硅片所用氯化金 传感器资料硅片所用氯化金-传感器资料2010-09-02问题:请举例说明传感器的应用大大方便了我们的生活,说明时要指出常用传感器的类型和工作原理最佳答案:英文名称:transducer/sensor传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。编辑本段传感器的定义国家标准GB7665-87对传感器下的定义是:能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为

2、电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。编辑本段传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。有些

3、传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。常见传感器的应用领域和工作原理列于表1.1。按照其用途,传感器可分类为:压力敏和力敏传感器位置传感器液面传感器能耗传感器速度传感器热敏传感器加速度传感器射线辐射传感器振动传感器湿敏传感器磁敏传感器气敏传感器真空度传感器生物传感器等。以其输出信号为标准可将传感器分为:模拟传感器-将被测量的非电学量转换成模拟电信号。数字传感器-将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。膺数字传感器

4、-将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。开关传感器-当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:(1)按照其所用材料的类别分金属聚合物陶瓷混合物(2)按材料的物理性质分导体绝缘体半导体磁性材料(3)按材料的晶体结构分单晶多晶非晶材料与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:(1)在已知的材料中探索新的现象

5、、效应和反应,然后使它们能在传感器技术中得到实际使用。(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表1.2中给出了一些可用于传感器技术的、能够转换能量形式的材料。按照其制造工艺,可以将传感器区分为:集成传感器薄膜传感器厚膜传感器陶瓷传感器集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。薄膜

6、传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。编辑本段传感器静态

7、特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。编辑本段传感器动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道

8、了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。编辑本段传感器的线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。编辑本段传感器的灵敏度灵敏度是指传感器在稳态工作情况下输出量变化y对输入量变化x的比值。它是输出

9、一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。编辑本段传感器的分辨力分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不

10、出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。分辨率与传感器的稳定性有负相相关性。编辑本段电阻式传感器电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。编辑本段电阻应变式传感器传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有

11、金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。编辑本段压阻式传感器压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。编辑本段热电阻传感器热电阻传感器主要是利用电阻值随温度变化而

12、变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200500范围内的温度。编辑本段温度传感器1、室温管温传感器:室温传感器用于测量室内和室外的环境温度,管温传感器用于测量蒸发器和冷凝器的管壁温度。室温传感器和管温传感器的形状不同,但温度特性基本一致。按温度特性划分,目前美的使用的室温管温传感器有二种类型:1、常数B值为4100K3%,基准电阻为25对应电阻10K3%。温度越高,阻值越小;温度越低,阻值越大。离25越远,对应电阻

13、公差范围越大;在0和55对应电阻公差约为7%;而0以下及55以上,对于不同的供应商,电阻公差会有一定的差别。兹附南韩新基传感器的温度与电阻的对应关系表(中间为标称值,左右分别为最小最大值):-10(57.1821-62.2756-67.7617)K;-5(48.1378-46.5725-50.2355)K;0(32.8812-35.2024-37.6537)K;5(25.3095-26.8778-28.5176)K;10(19.6624-20.7184-21.8114)K;15(15.4099-16.1155-16.8383)K;20(12.1779-12.6431-13.1144)K;30(

14、7.67922-7.97078-8.26595)K;35(6.12564-*0021-6.68106)K;40(4.92171-5.17519-5.43683)K;45(3.98164-4.21263-4.45301)K;50(3.24228-3.45097-3.66978)K;55(2.65676-2.84421-3.04214)K;60(2.18999-2.35774-2.53605)K。除个别老产品外,美的空调电控使用的室温管温传感器均使用这种类型的传感器。常数B值为3470K1%,基准电阻为25对应电阻5K1%。同样,温度越高,阻值越小;温度越低,阻值越大。离25越远,对应电阻公差范围

15、越大。兹附日本北陆传感器的温度与电阻的对应关系表(中间为标称值,左右分别为最小最大值):-10(22.1498-22.7155-23.2829)K;0(13.9408-14.2293-14.5224)K;10(9.0344-9.1810-9.3290)K;20(6.0125-6.0850-6.1579)K;30(4.0833-4.1323-4.1815)K;40(2.8246-2.8688-2.9134)K;50(1.9941-2.0321-2.0706)K;60(1.4343-1.4666-1.4994)K。这种类型的传感器仅用于个别老产品,如RF7.5WB、T-KFR120C、KFC23G

16、WY等。2、排气温度传感器:排气温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K3%,基准电阻为90对应电阻5K3%。兹附日本芝蒲传感器的温度与电阻的对应关系表(中间为标称值,左右分别为最小最大值):-30(823.3-997.1-1206)K;-20(456.9-542.7-644.2)K;-10(263.7-307.7-358.8)K;0(157.6-180.9-207.5)K;10(97.09-109.8-124.0)K;20(61.61-68.66-7*5)K;25(49.59-54.89-60.70)K;30(40.17-44.17-48.53)K;40(26.84-29

17、.15-31.63)K;50(18.35-19.69-21.12)K;60(12.80-13.59-14.42)K;70(9.107-9.589-10.05)K;80(6.592-6.859-7.130)K;100(3.560-3.702-3.846)K;110(2.652-2.781-2.913)K;120(2.003-2.117-2.235)K;130(1.532-1.632-1.736)K。3.、模块温度传感器:模块温度传感器用于测量变频模块(IGBT或IPM)的温度,目前用的感温头的型号是602F-3500F,基准电阻为25对应电阻6K1%。几个典型温度的对应阻值分别是:-10(25.

18、897-28.623)K;0(16.3248-17.7164)K;50(2.3262-2.5153)K;90(0.6671-0.7565)K。编辑本段湿度传感器高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数及所吸附水分子的介电常数受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论

19、的观点,液体的介电常数是一个与温度和频率有关的无量纲常数。水分子的在T=5时为78.36,在T=20时为79.63。有机物与温度的关系因材料而异,且不完全遵从正比关系。在某些温区随T呈上升趋势,某些温区随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为3.0一3.8。而水分子介电常数是高分子的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于的变化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线

20、性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。比较优质的产品主要使

21、用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感

22、器迫切解决的问题。当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯

23、化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。生物传感器的概念生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感

24、器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。生物传感器的分类按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA传感器等等按照传感器器件检测的原理分类,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物

25、传感器等。按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。UVA-1210是一个近紫外波光电传感器,可见光范围不响应,输出电流与紫外指数呈线性关系。适用于手机、PDA、MP4等便携式移动产品测量紫外指数,随时提醒人们(特别是女士)紫外线的强度并注意防晒,也适用于紫外波段的检测器、紫外线指数检测器。紫外传感器电气特性采用氮化镓基材料;PIN型光电二极管;光伏工作模式;对可见光无响应;暗电流低;输出电流与紫外指数成线性关系。符合欧盟RoHS指令,无铅、无镉典型应用测量紫外指数:手机、数码相机、MP4、PDA、GPS等携式移动产品;用于紫外检测器:全部紫外线波段的检测器、单UV-A波段检测器、紫外线指数检测器、紫外线杀菌灯辐照检测器。历史上的今天:特别声明:1:资料来源于互联网,版权归属原作者2:资料内容属于网络意见,与本账号立场无关3:如有侵权,请告知,立即删除。105103105822

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1