第9章柱体的扭转.doc

上传人:本田雅阁 文档编号:2534001 上传时间:2019-04-05 格式:DOC 页数:22 大小:524.52KB
返回 下载 相关 举报
第9章柱体的扭转.doc_第1页
第1页 / 共22页
第9章柱体的扭转.doc_第2页
第2页 / 共22页
第9章柱体的扭转.doc_第3页
第3页 / 共22页
第9章柱体的扭转.doc_第4页
第4页 / 共22页
第9章柱体的扭转.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《第9章柱体的扭转.doc》由会员分享,可在线阅读,更多相关《第9章柱体的扭转.doc(22页珍藏版)》请在三一文库上搜索。

1、第九章 柱体的扭转知识点扭转位移假设扭转应力函数薄膜比拟薄膜等高线与切应力椭圆截面切应力矩形截面柱体的扭转矩形截面柱体扭转切应力开口薄壁杆扭转局部切应力扭转翘曲函数扭转边界条件扭转应力函数描述的边界条件薄膜垂度与扭转应力椭圆截面杆的扭转椭圆截面翘曲扭转级数解狭长矩形的扭转应力一、内容介绍圆截面杆件的扭转问题通过平面假设可以解决。但是非圆截面柱体扭转时,由于构件轴线不再具有对称性质,因此平面假设不再成立。本章讨论非圆截面柱体的扭转。首先从位移解法入手,讨论横截面的翘曲,建立柱体扭转的基本方程和边界条件;然后,讨论柱体扭转的应力解法;最后应用薄膜比拟探讨柱体扭转的切应力分布形式。位移解法在柱体扭转

2、中,由于横截面面力边界条件的表达形式导致求解困难,因此柱体扭转仍然是应用应力解法。通过扭转应力函数,求解椭圆截面和矩形柱体的扭转问题。二、重点1、扭转位移解法与翘曲函数;2、扭转应力解法与扭转应力函数;3、薄膜比拟法;4、典型柱体扭转问题解。9.1 扭转问题的位移解学习思路:本节讨论自由扭转问题的位移解法。首先建立自由扭转的位移假设:一是刚截面假设;二是扭转的翘曲位移与轴线方向坐标无关。通过上述假设,将柱体的扭转位移用横截面的翘曲表示,因此使得问题的基本未知量简化成为翘曲函数F (x,y)。基本未知量翘曲函数F (x,y)。确定后,通过基本方程,将应力分量、应变分量用翘曲函数表示。位移表示的平

3、衡微分方程要求翘曲函数满足调和方程。因此只要选取的翘曲函数是调和函数,自然满足自由扭转问题的基本方程。自由扭转问题的边界条件,可以分为两个部分:侧面边界条件和端面边界条件。对于自由扭转,侧面边界不受力。根据这一条件,可以转化为翘曲函数与横截面边界的关系。端面采用合力边界条件,就是端面应力的合力为扭矩T 。这一边界条件,采用翘曲函数表达相当复杂。学习要点:1、扭转位移假设;2、扭转翘曲函数满足的基本方程;3、扭转边界条件;4、扭转端面边界条件1、扭转位移假设当柱体受外力矩作用发生扭转时,对于非圆截面杆件,其横截面将产生翘曲。如果横截面翘曲变形不受限制,称为自由扭转;如果横截面翘曲变形受到限制,就

4、是约束扭转。本章讨论的柱体扭转问题为自由扭转。对于柱体的自由扭转,假设柱体的位移约束为固定左端面任意一点和相应的两个微分线素,使得柱体不产生刚体位移。柱体右端面作用一力偶T,侧面不受力。设柱体左端面形心为坐标原点,柱体轴线为z 轴建立坐标系。柱体扭转时发生变形,设坐标为 z 的横截面的扭转角为a,则柱体单位长的相对扭转角为 。而横截面的扭转角a = j z 。对于柱体的自由扭转,首先考察柱体的表面变形。观察可以发现,柱体表面横向线虽然翘曲,但是各个横向线的翘曲是基本相同的,而且横向线的轮廓线形状基本不变。根据上述观察结论,对柱体内部位移作以下的假设:1、截面假设。柱体扭转当横截面翘曲时,它在O

5、xy平面上的投影形状保持不变,横截面作为整体绕 z 轴转动,如图所示。当扭转角 a 很小时,设OP=r,则P点的位移为2、横截面的翘曲位移与单位长度的相对扭转角j成正比,而且各个截面的翘曲相同,即w=jF (x,y)。F(x,y)称为圣维南(Saint Venant)扭转函数,或者称为翘曲函数。2、扭转翘曲函数满足的基本方程对于位移法求解,需要将平衡微分方程用位移分量表示。因为根据几何方程,应变分量为根据本构方程,应力分量为对于平衡微分方程,在不计体力的条件下,前两个方程自然满足,只有最后一个方程,为将位移表达式代入上式,则上式为Laplace 方程,它表示位移分量如果满足位移表示的平衡微分方

6、程,即Lam方程时,则扭转翘曲函数F (x,y)为调和函数。3、扭转边界条件下面考察柱体自由扭转的边界条件。对于自由扭转问题,在侧边界没有载荷作用。由于sx= sy= sz= txy =0,只有txz和tyz不等于零,因此分为柱体侧面和端面两部份面力边界条件讨论。柱体的侧边界没有外力作用,而且侧面边界法线方向余弦n=0。因此,面力边界条件只有第三式需要满足,有将翘曲函数表示的应力分量代入上式,并且注意到柱体侧面法线方向余弦与坐标系的关系,n=0,则如图所示有因为所以,柱体侧面面力边界条件转换为翘曲函数横截面边界条件。有4、扭转端面边界条件对于柱体的端面面力边界条件,选取柱体任意一个端面,例如右

7、端面,l=m=0,而n=1。因此面力边界条件的第三式自然满足,而前两式成为面力的合力为外力矩T,则端面面力边界条件为对于上述边界条件的前两式,由于同理所以边界条件的前两式是恒满足的。对于第三式有令则T =j GD,其中D表达了横截面的几何特征,GD称为柱体的抗扭刚度。总之,柱体的自由扭转的位移解法,归结为在边界条件下求解方程相对扭转角j由公式T =j GD确定。9.2 扭转问题的应力解学习思路:柱体自由扭转问题的位移解法,基本方程是翘曲函数表示的调和方程。基本方程的形式简单,但是边界条件的描述,特别是要用翘曲函数表达端面的合力边界条件比较困难。因此典型的扭转问题均是采用应力解法求解的。自由扭转

8、的应力解法,以扭转应力函数y(x,y)作为基本未知量。主要工作包括利用平衡微分方程建立扭转应力与应力函数的关系;将应力函数表达的应力分量代入变形协调方程,可以确定应力函数y(x,y)满足的基本方程。这是一个泊松方程。根据扭转问题的侧面面力边界条件,扭转应力函数在横截面的边界为常数。对于单连域问题,可以假设这个常数为零。对于扭转问题的端面面力边界条件,可以确定外力矩和应力函数的关系。学习要点:1、扭转应力函数;2、扭转应力函数与边界条件;3、扭转端面边界条件1、扭转应力函数扭转问题的位移解法方程虽然简单,但是边界条件相对比较复杂,因此通常使用应力解法求解柱体的扭转问题。根据扭转问题的平衡微分方程

9、,可得因此,必然有一个函数y(x,y),使得将上述扭转应力分量代入变形协调方程,则前四个方程恒满足,而后两个方程要求 ,所以,翘曲函数y(x,y)满足因此上式即扭转问题的应力解法的基本方程。y(x,y)称为普朗特(Prandtl)扭转应力函数。将扭转应力函数与翘曲函数公式相比较,则扭转应力函数与翘曲函数的关系为将上式代入变形协调方程,则C=-2Gj 。2、扭转应力函数与边界条件对于侧面边界条件将应力函数代入侧面面力边界条件,有所以,yc=const。根据应力表达式,在应力函数y(x,y)中增加或者减少一个常数对于应力分量的计算没有影响,因此对于单连域横截面柱体,可以将常数取为零。有yc0但是应

10、该注意,如果柱体横截面为多连域时,应力函数在每一个边界都是常数,但是各个常数一般并不相同。因此,只能将其中一个边界上的yc取为零。3、扭转端面边界条件对于杆的端面边界条件,有和位移解法相同,前两个边界条件恒满足,对于第三式,将应力分量表达式代入,有由于应力函数在边界上的值恒为零,上式线积分为零。所以根据上式可以求出单位长度扭转角j。这样,柱体扭转问题的基本方程归结为求解变形协调方程问题的边界条件为:侧面边界条件yc0;端面边界条件为 。9.3 扭转问题的薄膜比拟法学习思路:扭转问题的应力解法具有一个明显的优点,它能够借助于所谓的薄膜比拟(Prandtl比拟)法,使对应的扭转问题运算和分析变的更

11、为直观。薄膜比拟法是由德国力学家Prandtl提出的。薄膜比拟法的基本思想是:受均匀压力的薄膜与柱体的扭转,有着相似的微分方程和边界条件,因此可以通过测试薄膜变形,分析柱体扭转时横截面上的应力分布。当柱体受外力矩作用发生扭转时,对于非圆截面杆件,其横截面将产生翘曲。薄膜比拟法的主要作用是定性地分析横截面的扭转应力。这一方法借助薄膜等高线直观地说明横截面的切应力方向与大小。学习要点:1、薄膜比拟;2、薄膜垂度与扭转应力;3、薄膜等高线与切应力1、薄膜比拟扭转问题的应力解法具有一个明显的优点,它能够借助于所谓的薄膜比拟(Prandtl比拟)法,使对应的扭转问题运算和分析变的更为直观。薄膜比拟的基本

12、思想是:假设一个与柱体横截面形状相同的孔,孔上敷以张紧的均匀薄膜,那么,受均匀压力的薄膜与柱体的扭转,有着相似的微分方程和边界条件。因此,可以通过测试薄膜弯曲的情况,分析柱体扭转时横截面的应力分布。设有一块均匀的薄膜,张在一个与扭转柱体横截面形状相似的水平边界上。当薄膜承受微小的均匀压力q作用时,薄膜上各点将产生微小的垂度。将边界所在水平面作为Oxy平面,z轴垂直向下,如图所示。由于薄膜的柔顺性,可以假设它不承受弯矩,扭矩,剪力和压力,而只承受均匀的张力。设薄膜内单位宽度的张力为FT。现在考虑薄膜中微分单元abcd的平衡。微分单元受的总压力为qdxdy,薄膜的垂度用Z表示。ad边上的张力为FT

13、dy,它在 z轴上的投影为bc边上的张力也是FTdy,它在 z 轴上的投影为ab边的张力在 z轴上的投影为cd 边上的张力在 z轴上的投影为2、薄膜垂度与扭转应力根据薄膜微分单元平衡条件则简化可得这就是薄膜平衡时垂度Z所满足的微分方程,垂度Z在边界上显然是等于零。有Z=0垂度Z所满足的微分方程与扭转应力函数相同,均为泊松方程,只是常数不同。下面考察薄膜垂度Z所满足的边界条件。讨论薄膜所围的体积,有上述分析表明,薄膜垂度Z与扭转应力具有相同的函数形式,边界条件的差别仅是一个常数。虽然确定薄膜体积与扭矩的关系仍然是困难的,但是通过薄膜曲面,可以形象地描述柱体横截面的扭转应力分布。3、薄膜等高线与切

14、应力由于薄膜垂度Z与扭转应力具有相同的函数形式,其差别仅是一个常数。因此我们可以通过薄膜曲面,形象地表示出横截面上的应力分布情况。我们可以想象一系列的和Oxy平面平行的平面与薄膜曲面相截,得到一系列曲线,显然这些曲线是薄膜的等高线。对于薄膜的等高线上的任意点的垂度Z为常数,所以,Z对等高线方向的导数为零,因此, ,这就是说 。将扭转应力分量计算公式中的坐标转换成曲线坐标,可以写出切应力分别沿等高线的切线和法线方向的分量表达式:上式表明柱体扭转时,横截面的切应力的方向总是沿着薄膜上对应点的等高线的切线方向,切应力的数值与等高线的法线导数成正比,如图所示。因此,薄膜的等高线,对应于扭转杆件横截面上

15、这样的曲线,各点的切应力均与曲线相切。因此这一曲线称为切应力线。这个结论对于研究柱体扭转时横截面上的应力分布是很重要的。因为,虽然我们很难完全通过薄膜比拟测定柱体扭转时横截面的应力分布,但是通过这种比拟,至少可以定性的描述出横截面上应力分布的大致情况。例如,要知道横截面上哪一点的应力最大,只要看一下对应的薄膜上哪一点的斜率最大。也就是说,薄膜上斜率最大的点,就是对应横截面上切应力最大的作用点。由此可知,最大切应力一定发生在横截面的周界上,而且横截面的周界是一条切应力线。9.4 椭圆截面杆的扭转学习思路:对于自由扭转问题的应力解法,椭圆横截面柱体扭转问题是最成功的应用。本节通过椭圆截面柱体的扭转

16、问题,对应力解法作全面介绍。应力解法的关键是应力函数的确定。根据边界应力函数值为零,椭圆横截面柱体扭转的应力函数是容易确定的。对于待定常数根据基本方程,即泊松方程确定。端面面力边界条件的应用确定了外力偶与柱体应力的关系。通过这个条件,可以建立待定常数与外力偶的关系。应力函数确定后,可以确定横截面切应力以及最大切应力关系式。椭圆形横截面的最大切应力在长边的中点。本节最后讨论横截面的翘曲,即扭转变形。对于非圆横截面柱体,在扭矩作用下,横截面将发生翘曲。因此对于非圆横截面柱体的扭转,平面假设不能使用。学习要点:1、椭圆截面直杆应力函数;2、椭圆截面切应力;3、椭圆截面翘曲1、椭圆截面直杆应力函数设有

17、椭圆截面直杆,它的横截面为椭圆边界,椭圆的长短半轴分别为a和b,如图所示。椭圆方程可以写作根据自由扭转问题的基本方程,应力函数在横截面的边界上应该等于零,所以假设应力函数为这一应力函数满足yc=0。将上述应力函数代入基本方程即则扭转基本方程满足。2、椭圆截面切应力将应力函数代入端面边界条件公式,则设计算可得 。回代可得应力函数表达式将上述应力函数代入应力分量计算公式可以得到横截面应力分量为横截面上的任意一点的合成切应力为根据薄膜比拟,最大切应力发生在椭圆边界上,边界切应力最大值在椭圆短轴处,而最小值在椭圆的长轴处,如图所示有3、椭圆截面翘曲下面讨论椭圆截面杆扭转时横截面的翘曲,将应力分量代入翘

18、曲函数公式,则将上面两式分别对x和y积分,则比较上述两式,必然有f1(y)=f2(x)k(常数),所以其中,kj 表示横截面沿z方向的刚体平动,对变形没有影响,因此可以略去。所以上式表达了横截面在变形后并不是保持为平面,而是翘曲成为曲面,成为双曲抛物面,如图所示曲面的等高线在Oxy面上的投影是双曲线,而且这些双曲线的渐近线是x轴和y轴。只有当a=b时,即圆截面杆,才有w=0,横截面保持为平面。9.5 矩形截面杆的扭转学习思路: 应力函数的确定是扭转应力解法的关键。但是矩形横截面柱体的扭转问题不能采用与椭圆形截面柱体相同的方法建立扭转应力函数。矩形截面柱体分析的第一步是引入特解,将基本方程泊松方

19、程简化为拉普拉斯方程。第二步是将应力函数表达为坐标x和y的函数。并且根据问题性质,简化应力函数,为求解级数形式表达的应力函数作准备。第三步是根据面力边界条件确定级数形式的应力函数。最后,根据应力函数求解横截面切应力表达式。并且分析横截面切应力分布。学习要点:1、矩形截面柱体的扭转分析;2、扭转应力函数;3、扭转级数解;4、矩形截面柱体扭转切应力;5、横截面应力分析1、矩形截面柱体的扭转分析设矩形的边长为a和b,如图所示矩形截面杆件的扭转问题,不能像椭圆截面杆件扭转问题一样假设扭转应力函数为原因很简单,这个应力函数虽然满足y c0,但是泊松方程 却不可能满足。由于根据边界条件难以直接确定满足基本

20、方程的扭转应力函数,因此首先简化扭转问题的基本方程。对于扭转问题的应力解法,基本方程为泊松方程。为了简化分析,需要找到泊松方程 的特解,将基本方程转化为拉普拉斯方程。因为拉普拉斯方程求解相对简单。因为变形协调方程 有一个特解 ,所以设则变形协调方程转化为对于柱体的侧面面力边界条件,y c0,则要求y 0满足边界条件2、扭转应力函数由于柱体横截面是关于坐标轴x和y对称的,而扭矩T是关于坐标轴反对称的,因此横截面切应力必然是与坐标轴反对称的。所以,设扭转应力函数y 0(x,y)为代入变形协调方程 ,则将上式改写为其中l为任意常数。根据所以根据薄膜比拟,矩形横截面切应力是坐标的奇函数,因此应力函数应

21、该为坐标x和y的偶函数。所以上式仅是方程 的一个特解。如果将所有特解作线性迭加就是方程的通解,所以y 0(x,y)写作3、扭转级数解根据边界条件的第二式,有由于 ,所以 。因此, 。回代可得根据边界条件的第一式,有对于上式两边同时乘以 ,并在(-b,b)区间积分,可得所以,应力函数为4、矩形截面柱体扭转切应力根据应力函数表达式,应力分量为上式中的单位长度扭转角j 由端面面力边界条件确定,即对于上述级数,其收敛很快,取n=0一项分析,则5、横截面应力分析根据切应力表达式,可以得到矩形横截面的应力分布,如图所示最大切应力发生在矩形长边的中点,即根据公式可得单位长度扭转角和最大扭转切应力其中,b 和

22、 g 都是仅与比值 a/b 有关的参数,这两个因子通过计算可以表示如下9.6 开口薄壁杆的扭转学习思路:狭长矩形是指矩形横截面的一边长度远大于另外一边,这个问题有明显的工程意义。工程结构中广泛使用的形材大多是狭长矩形或者曲边狭长矩形组成的开口薄壁杆件。根据薄膜比拟,横截面的切应力方向是与狭长矩形的长边一致,而且数值不变。这个条件使得狭长矩形的扭转切应力公式不难推导,同时,直边与曲边狭长矩形的应力分布是相同的。对于开口薄壁杆件的扭转切应力分析,首先将开口薄壁杆件分解为一系列的狭长矩形。这些狭长矩形共同承担截面内力扭矩,并且在扭矩作用下变形。注意到各个狭长矩形的扭矩之和为外力矩,而相对扭矩角是相同

23、的,可以得到各个狭长矩形的扭转切应力。开口薄壁杆件的扭转切应力是在理想狭长矩形杆切应力基础上推导的,这个应力不能用于局部应力分析。原因是开口薄壁杆件扭转切应力公式不能反映应力集中;而且为了减少应力集中的影响,工程型材在矩形与矩形的交接处有圆弧。对于工程问题,局部应力分析可以查阅相关图表。学习要点:1、狭长矩形的扭转应力;2、开口薄壁杆;3、开口薄壁杆扭转应力;4、局部切应力。1、狭长矩形的扭转应力首先讨论狭长矩形的扭转应力,设狭长矩形的长边为a,短边长度为d,而且ad ,如图所示根据薄膜比拟,狭长矩形薄膜的形状沿长边方向基本不变,主要薄膜形状改变在短边方向。因此可以推断,应力函数在横截面的几乎

24、是不随长度方向变化,因此对应的薄膜形状近似于柱面。所以可以近似地取因此狭长矩形杆的扭转变形协调方程可以写作这是一个常微分方程,对上式作积分,并注意到边界条件 ,可得将上述应力函数代入扭转端面边界条件可得根据公式有最大切应力由薄膜比拟可以推论在矩形截面的长边上,其数值为单位长度的扭转角为上述结论与矩形截面杆件扭转应力分析结果完全一致。2、开口薄壁杆工程结构中经常使用的开口薄壁杆,它们的横截面大都是由等宽度的狭长矩形组成的。根据薄膜比拟可以想象,假如一个直边狭长矩形和一个曲边狭长矩形,它们具有相同的长度a和宽度d,如果张在这两个狭长矩形上的薄膜受有相同的压力 q 和张力T,两个薄膜就与各自边界平面

25、所占的体积V,以及薄膜的斜率大体是相同的。因此,曲边狭长矩形截面扭杆与直边狭长矩形截面扭杆的扭转切应力是近似的。所以,以下关于狭长矩形截面扭杆分析同样适用于曲边狭长矩形截面杆件。3、开口薄壁杆扭转应力如果用ai和di 分别表示开口薄壁杆第i个狭长矩形的长度和宽度,Ti 表示该矩形面积上承受的扭矩,t i表示该矩形长边中点的切应力,j 为单位长度的扭转角。则根据合力条件,开口薄壁杆横截面的扭矩为根据上述公式,消去j ,有回代可得4、局部切应力对于狭长矩形长边中点的切应力,上述公式给出了相当精确的解答。但是需要注意的是:在开口薄壁杆件两个狭长矩形的连接处,由于应力集中,可能发生远大于狭长矩形中点的局部切应力。开口薄壁杆件的局部应力与比值tmax/t i和r/di 有关,如图所示。tmax是圆角处的最大切应力,t i是用公式计算出的切应力,r 是内圆角的曲率半径,di是狭长矩形的宽度。图中列出局部应力与比值r/di 的关系22

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1