选修3-2最好教案.doc

上传人:本田雅阁 文档编号:2748316 上传时间:2019-05-10 格式:DOC 页数:34 大小:2.85MB
返回 下载 相关 举报
选修3-2最好教案.doc_第1页
第1页 / 共34页
选修3-2最好教案.doc_第2页
第2页 / 共34页
选修3-2最好教案.doc_第3页
第3页 / 共34页
选修3-2最好教案.doc_第4页
第4页 / 共34页
选修3-2最好教案.doc_第5页
第5页 / 共34页
点击查看更多>>
资源描述

《选修3-2最好教案.doc》由会员分享,可在线阅读,更多相关《选修3-2最好教案.doc(34页珍藏版)》请在三一文库上搜索。

1、第四章 电磁感应4.1 划时代的发现一、基础知识1、奥斯特梦圆“电生磁”-电流的磁效应2、法拉第心系“磁生电”-电磁感应现象二、实例探究【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是( )A安培 B赫兹 C法拉第 D麦克斯韦【例2】发现电流磁效应现象的科学家是_,发现通电导线在磁场中受力规律的科学家是_,发现电磁感应现象的科学家是_,发现电荷间相互作用力规律的的科学家是_。【例3】下列现象中属于电磁感应现象的是( )A磁场对电流产生力的作用 B变化的磁场使闭合电路中产生电流C插在通电螺线管中的软铁棒被磁化 D电流周围产生磁场(C、B)4.2、探究电磁感应的产生条件一、基本知识1、

2、磁通量定义:公式:f=BS ,单位_,符号_。推导:B=f/S,磁感应强度又叫磁通密度,用Wb/ m2表示B的单位;计算:当B与S垂直时f=BS;当B与S不垂直时f的计算要注意分解B,用垂直S的分量乘以S;线圈有n匝时仍用f=BS求,不可以乘以匝数。2、初中知识回顾:当闭合电路的一部分做切割磁感线运动时,电路中会产生感应电流。3、探究电磁感应的条件实验一:闭合电路的部分导线在匀强磁场中切割磁感线, 探究导线运动快慢与电流表示数大小的关系.实验二:向线圈中插入磁铁,或把磁铁从线圈中抽出, 探究磁铁插入或抽出快慢与电流表示数大小的关系。实验三:通电线圈放入大线圈或从大线圈中拔出,或改变线圈中电流的

3、大小(改变滑线变阻器的滑片位置) 探究将小线圈从大线圈中抽出或放入快慢与电流表示数的关系以上实验结论:1、产生感应电流的条件:电路闭合;穿过闭合电路的磁通量发生改变2、电磁感应现象:利用磁场产生电流的现象叫电磁感应现象 3、感应电流:由磁场产生的电流叫感应电流 4、思考产生感应电动势的条件二、例题分析例1、右图哪些回路中会产生感应电流 例2、如图,要使电流计G发生偏转可采用的方法是 A、K闭合或断开的瞬间 B、K闭合,P上下滑动 C、在A中插入铁芯 D、在B中插入铁芯三、练习与作业1、关于电磁感应,下列说法中正确的是A导体相对磁场运动,导体内一定会产生感应电流B导体做切割磁感线的运动,导体内一

4、定会产生感应电流C闭合电路在磁场中做切割磁感线的运动,电路中一定会产生感应电流D穿过闭合电路的磁通量发生变化,电路中一定会产生感应电流2、恒定的匀强磁场中有一圆形闭合圆形线圈,线圈平面垂直于磁场方向,当线圈在此磁场中做下列哪种运动时,线圈中能产生感应电流A线圈沿自身所在的平面做匀速运动B线圈沿自身所在的平面做加速直线运动C线圈绕任意一条直径做匀速转动D线圈绕任意一条直径做变速转动3、如图,开始时距形线圈平面与磁场垂直,且一半在匀强磁场外,另一半在匀强磁场内,若要使线圈中产生感应电流,下列方法中可行的是A以ab为轴转动B以oo/为轴转动C以ad为轴转动(转过的角度小于600)D以bc为轴转动(转

5、过的角度小于600)4、如图,距形线圈abcd绕oo/轴在匀强磁场中匀速转动,下列说法中正确的是A线圈从图示位置转过90的过程中,穿过线圈的磁通量不断减小B线圈从图示位置转过90的过程中,穿过线圈的磁通量不断增大C线圈从图示位置转过180的过程中,穿过线圈的磁通量没有发生变化D线圈从图示位置转过360的过程中,穿过线圈的磁通量没有发生变化6、在无限长直线电流的磁场中,有一闭合的金属线框abcd,线框平面与直导线ef在同一平面内(如图),当线框做下列哪种运动时,线框中能产生感应电流A、水平向左运动 B、竖直向下平动C、垂直纸面向外平动D、绕bc边转动 4.3 法拉第电磁感应定律一、基础知识1、感

6、应电动势(1)电磁感应现象:利用磁场产生电流的现象叫电磁感应现象(2) 产生感应电流的条件:线路闭合,闭合回路中磁通量发生变化。(3) 感应电动势:定义:在电磁感应现象中产生的电动势叫感应电动势;其大小等于磁通量的变化率。产生条件:回路中的磁通量发生变化但回路不一定闭合;有关因素:穿过线圈的磁通量的变化快慢(Df/Dt)有关;注意:磁通量的大小f;磁通量的变化Df;磁通量的变化快慢(Df/Dt)的区分;2、法拉第电磁感应定律内容:电路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比。公式:单匝线圈:E=Df/Dt 多匝线圈:E=nDf/Dt 适用范围:普遍适用3、导线切割磁感线时产生的

7、感应电动势计算公式:E=BL vsinq。q导线的运动方向与磁感线的夹角。推导方法:条件:导线的运动方向与导线本身垂直 适用范围:匀强磁场,导线切割磁感线单位:1V=1T1m1m/s=1Wb/s4、反电动势电动机转动时,线圈中也会产生感应电动势,感应电动势总要削弱电源电动势的作用,我们就把感应电动势称为反电动势;其作用是阻碍线圈的转动。教材P12。电动机在使用时的注意点:二、例题分析例1、如图,导体平行磁感线运动,试求产生的感应电动势的大小(速度与磁场的夹角q,导线长度为L)例2、如右图,电容器的电容为C,两板的间距为d,两板间静止一个质量为m,电量为+q的微粒,电容器C与一个半径为R的圆形金

8、属环相连, 金属环内部充满垂直纸面向里的匀强磁场.试求: DB/Dt等于多少?例3、如右图, 无限长金属三角形导轨COD上放一根无限长金属导体棒MN,拉动MN使它以速度v向右匀速运动,如果导轨和金属棒都是粗细相同的均匀导体,电阻率都相同,那么MN运动过程中,闭合回路的A感应电动势保持不变 B感应电动流保持不变C感应电动势逐渐增大 D感应电动流逐渐增大三、练习与作业1、如右图,平行放置的金属导轨M、N之间的距离为L;一金属杆长为2L,一端以转轴o/固定在导轨N上,并与M无摩擦接触,杆从垂直于导轨的位置,在导轨平面内以角速度w顺时针匀速转动至另一端o/脱离导轨M。若两导挥间是一磁感应强度为B ,方

9、向垂直于纸面向里的匀强磁场,不计一切电阻,则在上述整个转动过程中A、金属杆两端的电压不断增大B、o/端的电势总是高于o端的电势C、两导轨间的最大电压是2BL2wD、两导轨间的平均电压是271/2BL2w/2p2、如右图,在磁感应强度为B的匀强磁场中,一直角边长度为a,电阻为R的等腰直角三角形导线框以速度v垂直于斜边方向在纸面内运动,磁场与纸面垂直,则导线框的斜边产生的感应电动势为 ,导线框中的感应电流强度为 。3、如左图,一边长为a,电阻为R的正方形导线框,以恒定的速度v向右进入以MN为边界的匀强磁场,磁场方向垂直于线框平面,磁感应强度为B,MN与线框的边成45角,则在线框进入磁场过程中产生的

10、感应电流的最大值等于 4、如图,长为L的金属杆在垂直纸面向里的磁感应强度为B的匀强磁场中,沿逆时针方向绕o点在纸面内匀速转动,若角速度为w,则杆两端a、b和o间的电势差U a o= 以及Ubo= 5、半径为10cm、电阻为0.2W的闭合金属圆环放在匀强磁场中,磁场方向垂直于圆环所在平面,当磁感应强度为B从零开始随时间t成正比增加时,环中感应电流为0.1A。试写出B与t的关系式(B、t的单位分别取T、s)6、如图,导线全部为裸导线,半径为r的圆内有垂直于圆平面的匀强磁场,感应强度为B。一根长度大于2r的导线MN以速度v在圆环上无摩擦地自左端匀速滑动到右端,电路的固定电阻为R,其余电阻不计,试求M

11、N从圆环的左端滑到右端的过程中电阻R上的电流强度的平均值及通过的电量。 4.4 楞次定律 一、基础知识1实验(1)选旧干电池用试触的方法查明电流方向与电流表指针偏转方向的关系明确:对电流表而言,电流从哪个接线柱流入,指针向哪边偏转(2)闭合电路的一部分导体做切割磁感线的情况a磁场方向不变,两次改变导体运动方向,如导体向右和向左运动b导体切割磁感线的运动方向不变,改变磁场方向根据电流表指针偏转情况,分别确定出闭合电路的一部分导体在磁场中做切割磁感线运动时,产生的感应电流方向感应电流的方向跟导体运动方向和磁场方向都有关系感应电流的方向可以用右手定则加以判定右手定则:伸开右手,让拇指跟其余四指垂直,

12、并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动方向,其余四指指的就是感应电流的方向(3)闭合电路的磁通量发生变化的情况:实线箭头表示原磁场方向,虚线箭头表示感应电流磁场方向分析:(甲)图:当把条形磁铁N极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反(乙)图:当把条形磁铁N极拔出线圈中时,穿过线圈的磁通量减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同(丙)图:当把条形磁铁S极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反(丁)图:当条形磁铁S极拔出线圈中时,穿过线圈的磁通量

13、减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同2、实验结论:楞次定律-感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化可以简化为“来拒去留、增反减同”。说明:对“阻碍”二字应正确理解“阻碍”不是“阻止”,而只是延缓了原磁通的变化,电路中的磁通量还是在变化的例如:当原磁通量增加时,虽有感应电流的磁场的阻碍,磁通量还是在增加,只是增加的慢一点而已实质上,楞次定律中的“阻碍”二字,指的是“反抗着产生感应电流的那个原因”3、应用楞次定律判定感应电流的步骤(四步走)(1)明确原磁场的方向;(2)明确穿过闭合回路的磁通量是增加还是减少;(3)根据楞次定律,判定感应

14、电流的磁场方向;(4)利用安培定则判定感应电流的方向4、推论:当导线切割磁感线时可用右手定则来判定,即大拇指与四指垂直,让磁感线垂直穿过手心,大拇指指向导线的运动方向,则四指的指向为感应电流的方向二、例题分析例1、在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图,导轨上放一根导线ab,磁感线垂直于导轨所在平面。欲使M所包围的小闭合线圈N产生顺时针方向的感应电流,则导线的运动情况可能是A、匀速向右运动 B、加速向右运动 C、减速向右运动 D、加速向左运动例2、如图,水平地面上方有正交的匀强磁场和匀强电场,电场竖直向下,磁场垂直纸面向里,半圆形铝框从直径出于水平位置时开始下落,不计

15、阻力,a、b两端落到地面的次序是A、a先于b B、b先于a C、a、b同时落地 D、无法判定例3、如图,电容器PQ的电容为10mF,垂直于回路的磁场的磁感应强度以510-3T/s的变化率均匀增加,回路面积为10-2m2。则PQ两极电势差的绝对值为 V。P极所带电荷的种类为 ,带电量为 C。三、练习与作业1、一根沿东西方向的水平导线,在赤道上空自由落下的过程中,导线上各点的电势 A、东端最高 B、西端最高 C、中点最高 D、各点一样高2、如右图,匀强磁场垂直于圆形线圈指向纸里,a、b、c、d为圆形线圈上等距离的四点,现用外力作用在上述四点,将线圈拉成正方形,设线圈导线不可伸长,且线圈仍处于原先所

16、在的平面内,则在线圈发生形变的过程中 A、线圈中将产生abcd方向的感应电流 B、线圈中将产生adcb方向的感应电流 C、线圈中将产生感应电流的方向先是abcd,后是adcb D、线圈中无感应电流3、如右图,一均匀的扁平条形磁铁的轴线与一圆形线圈在同一平面内,磁铁中心与圆心重合。为了在磁铁开始运动时在线圈中得到逆时针方向的感应电流,磁铁的运动方式应是A、 N极向纸内,S极向纸外,使磁铁绕O点转动B、S极向纸内,N极向纸外,使磁铁绕O点转动C、使磁铁在线圈平面内绕O点顺时针转动D、使磁铁在线圈平面内绕O逆时针转动4、如右图,ab是一个可绕垂直于纸面的轴O转动的闭合距形导线框,E是电源,当滑线变阻

17、器R的滑片P自左向右滑行时,线框ab将A、保持静止不动 B、沿逆时针方向转动C、沿顺时针方向转动 D、 发生转动,但电源极性不明,无法确定转动方向。 4.5 感生电动势和动生电动势一、基础知识:1、感应电场与感生电动势由于磁场的变化而激发的电场叫感生电场。感生电场对自由电荷的作用力充当了非静电力。由感生电场产生的感应电动势,叫做感生电动势。2、洛伦兹力与动生电动势一段导体切割磁感线运动时相当于一个电源,这时非静电力与洛伦兹力有关。由于导体运动而产生的电动势叫动生电动势。如图所示,导体棒运动过程中产生感应电流,试分析电路中的能量转化情况。导体棒中的电流受到安培力作用,安培力的方向与运动方向相反,

18、阻碍导体棒的运动,导体棒要克服安培力做功,将机械能转化为电能。二、实例探究磁场变强【例1】如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变化,而使电路中产生了感应电动势,下列说法中正确的是(AC)A磁场变化时,会在在空间中激发一种电场B使电荷定向移动形成电流的力是磁场力C使电荷定向移动形成电流的力是电场力D以上说法都不对【例2】如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是(AB)A因导体运动而产生的感应电动势称为动生电动势B动生电动势的产生与洛仑兹力有关C动生电动势的产生与电场力有关D动生电动势和感生电动势产生的原因是一样的【例3】如

19、图所示,两根相距为L的竖直平行金属导轨位于磁感应强度为B、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab、cd质量均为m,电阻均为R,若要使cd静止不动,则ab杆应向 上运动,速度大小为_2mgR/B2L2_,作用于ab杆上的外力大小为_2mg _巩固练习1如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将(B)A不变 B增加 C减少 D以上情况都可能2穿过一个电阻为l的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2Wb,则(BD)A线圈中的感应电动势一定是每秒减少2VB线圈中的感应电动势一定是2VC线

20、圈中的感应电流一定是每秒减少2AD线圈中的感应电流一定是2A3在匀强磁场中,ab、cd两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示,下列情况中,能使电容器获得最多电荷量且左边极板带正电的是(C)Av1v2,方向都向右Bv1v2,方向都向左Cv1v2,v1向右,v2向左Dv1v2,v1向左,v2向右4如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6,线圈电阻R2=4,求:(1)磁通量变化率,回路的感应电动势;(4V)(2)a、b两点间电压Uab(2.4A)5如图所示,在物理实验中,常

21、用“冲击式电流计”来测定通过某闭合电路的电荷量探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度已知线圈匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R,把线圈放在被测匀强磁场中,开始时线圈与磁场方向垂直,现将线圈翻转180,冲击式电流计测出通过线圈的电荷量为q,由此可知,被测磁场的磁磁感应强度B=_qR/2nS_6如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度两个相同的磁性小球,同时从A、B管上端的管口无初速释放,穿过A管的小球比穿过B管的小球先落到地面下面对于两管的描述中可能正确的是(AD)AA管是用塑料制成的,B管是用铜制成的BA管是用

22、铝制成的,B管是用胶木制成的CA管是用胶木制成的,B管是用塑料制成的DA管是用胶木制成的,B管是用铝制成的4.6 互感和自感一、互感现象1、基本概念:互感:互感现象:互感电动势: 2、互感的理解:(1)、如右图断开、闭合开关瞬间会发生电磁感应吗?(2)这是互感吗?小结:互感现象不仅发生与绕在同一铁芯上的两个何相互靠近的电路之间。线圈之间,而且可以发生于任何两个相互靠近的电路之间。问题情景:(互感中的能量)另一电路中能量从哪儿来的?小结:互感现象可以把能量从一个电路传到另一个电路。3、互感的应用和防止: 二、自感现象:1、由于导体本身的电流发生变化而产生的电磁感应现象叫自感现象。2、自感电动势:

23、自感现象中产生的感应电动势叫自感电动势,E=LIt3、原因:由电流的磁效应可知,线圈通电后周围就有磁场产生,电流变化,则磁场也变化,那么对于这个线圈自身来说穿过它的磁通量在此过程中也发生了变化,因此也产生了电磁感应现象。 4.磁场的能量分析:电源断开以后,线圈中电流不会立即消失,这时的电流仍然可以做功,说明线圈储存能量。当开关闭合时,线圈中的电流从无到有,其中的磁场也是从天到有,这可以看作电源把能量输送到磁场,储存在磁场中。这里我们知识一个合理的假设,有关电磁场能量的直接式样验证,要在我们认识了电磁波之后才有可能。5自感现象的理解:线圈中电流的变化不能在瞬间完成,即不能“突变”。也可以说线圈能

24、体现电的惯性6自感的应用与防止:应用:日光灯 防止:变压器、电动机三、自感系数1.自感系数,简称自感或电感,用字母L表示。影响因素:形状、长短、匝数、有无铁芯。2单位:亨利 符号:H 常用单位:毫亨(mH) 微亨(H)四、实例探究【例1】如图所示,电路甲、乙中,电阻R和自感线圈L的电阻值都很小,接通S,使电路达到稳定,灯泡D发光。则( )A在电路甲中,断开S,D将逐渐变暗B在电路甲中,断开S,D将先变得更亮,然后渐渐变暗C在电路乙中,断开S,D将渐渐变暗D在电路乙中,断开S,D将变得更亮,然后渐渐变暗(AD)【例2】如图所示,自感线圈的自感系数很大,电阻为零。电键K原来是合上的,在K断开后,分

25、析:(1)若R1R2,灯泡的亮度怎样变化?(2)若R1R2,灯泡的亮度怎样变化?五、巩固练习1下列关于自感现象的说法中,正确的是()A自感现象是由于导体本身的电流发生变化而产生的电磁感应现象B线圈中自感电动势的方向总与引起自感的原电流的方向相反C线圈中自感电动势的大小与穿过线圈的磁通量变化的快慢有关D加铁芯后线圈的自感系数比没有铁芯时要大2关于线圈的自感系数,下面说法正确的是()A线圈的自感系数越大,自感电动势一定越大B线圈中电流等于零时,自感系数也等于零C线圈中电流变化越快,自感系数越大D线圈的自感系数由线圈本身的因素及有无铁芯决定3如图所示,L为一个自感系数大的自感线圈,开关闭合后,小灯能

26、正常发光,那么闭合开关和断开开关的瞬间,能观察到的现象分别是()A小灯逐渐变亮,小灯立即熄灭B小灯立即亮,小灯立即熄灭C小灯逐渐变亮,小灯比原来更亮一下再慢慢熄灭D小灯立即亮,小灯比原来更亮一下再慢慢熄灭(ACD,D,A)4.7 涡流1、涡流当线圈中的电流发生变化时,这个线圈附近的导体中就会产生感应电流。这种电流看起来很像水的旋涡,所以叫做涡流。应用:电磁炉:因为铁锅中的涡流很强,会产生大量的热。变压器:铁芯中的涡流被限制在狭窄的薄片之内,回路的电阻很大,涡流大为减弱,涡流产生的热量也减少。2、电磁阻尼导体在磁场中运动时,感应电流使导体受到安培力的作用,安培力的方向总是阻碍导体的运动,这种现象

27、称为电磁阻尼。 演示如图所示,弹簧下端悬挂一根磁铁,将磁铁托起到某高度后释放,磁铁能振动较长时间才停下来。如果在磁铁下端放一固定线圈,磁铁会很快停下来。上述现象说明了什么?当磁铁穿过固定的闭合线圈时,在闭合线圈中会产生感应电流,感应电流的磁场会阻碍磁铁和线圈靠近或离开,也就是磁铁振动时除了空气阻力外,还有线圈的磁场力作为阻力,安培阻力较相对较大,因而磁铁会很快停下来。3、电磁驱动磁场相对于导体运动时,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种现象称为电磁驱动。交流感应电动机就是应用电磁驱动的原理工作的。简要介绍交流感应电动机的工作过程。4、实例探究【例1】如图所示是高频焊接原理

28、示意图线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝产生大量热量,将金属融化,把工件焊接在一起,而工件其他部分发热很少,以下说法正确的是()A电流变化的频率越高,焊缝处的温度升高的越快B电流变化的频率越低,焊缝处的温度升高的越快C工件上只有焊缝处温度升的很高是因为焊缝处的电阻小D工件上只有焊缝处温度升的很高是因为焊缝处的电阻大(AD)巩固练习1如图所示,一块长方形光滑铝板水平放在桌面上,铝板右端拼接一根与铝板等厚的条形磁铁,一质量分布均匀的闭合铝环以初速度v从板的左端沿中线向右端滚动,则()A铝环的滚动速度将越来越小B铝环将保持匀速滚动C铝环的运动将逐渐偏向条形

29、磁铁的N极或S极D铝环的运动速率会改变,但运动方向将不会发生改变2如图所示,闭合金属环从曲面上h高处滚下,又沿曲面的另一侧上升,设环的初速为零,摩擦不计,曲面处在图示磁场中,则()A若是匀强磁场,环滚上的高度小于hB若是匀强磁场,环滚上的高度等于hC若是非匀强磁场,环滚上的高度等于hD若是非匀强磁场,环滚上的高度小于h3如图所示,在光滑水平面上固定一条形磁铁,有一小球以一定的初速度向磁铁方向运动,如果发现小球做减速运动,则小球的材料可能是()A铁 B木 C铜 D铝4如图所示,圆形金属环竖直固定穿套在光滑水平导轨上,条形磁铁沿导轨以初速度v0向圆环运动,其轴线在圆环圆心,与环面垂直,则磁铁在穿过

30、环过程中,做_减速_运动(选填“加速”、“匀速”或“减速”)5如图所示,在O点正下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B不考虑空气阻力,则下列说法正确的是()AA、B两点在同一水平线 BA点高于B点CA点低于B点 D铜环将做等幅摆动(1B,2BD,3CD,5B) 第五章 交变电流51 交变电流一、基础知识:1、交变电流:大小和方向都随时间做周期性变化电流,叫做交变电流。 2、交变电流的产生矩形线圈在匀强磁场中匀速转动时线圈里能产生交变电流。3、解释如右图:当ab边向右、cd边向左运动时,线圈中感应电流的方向 沿着abcda方向流动的。当ab边向左、cd边向右运动时,线

31、圈中感应电流的方向如何?感应电流是沿着dcbad方向流动的。 线圈平面与磁感线平行时(极值面),ab边与cd边线速度方向都跟磁感线方向垂直,即两边都垂直切割磁感线,此时产生感应电动势最大。线圈转到什么位置时,产生的感应电动势最小?当线圈平面跟磁感线垂直时(中性面),ab边和cd边线速度方向都跟磁感线平行,即不切割磁感线,此时感应电动势为零。(1)中性面线框平面与磁感线垂直的位置。(2)线圈处于中性面位置时,穿过线圈最大,但=0。(3)线圈越过中性面,线圈中I感方向要改变。线圈转一周,感应电流方向改变两次。4交变电流的变化规律设线圈平面从中性面开始转动,角速度是。经过时间t,线圈转过的角度是t,

32、ab边的线速度v的方向跟磁感线方向间的夹角也等于t,如右图所示。设ab边长为L1,bc边长L2,磁感应强度为B,这时ab边产生的感应电动势多大?eab=BL1vsint = BL1sint =BL1L2sint此时整个线框中感应电动势多大?e=eab+ecd=BL1L2sint若线圈有N匝时,相当于N个完全相同的电源串联,e=NBL1L2sint,令Em=NBL1L2,叫做感应电动势的峰值,e叫做感应电动势的瞬时值。 根据部分电路欧姆定律,电压的最大值Um=ImR,电压的瞬时值U=Umsint。电动势、电流与电压的瞬时值与时间的关系可以用正弦曲线来表示,如下图所示:4几种常见的交变电波形 5、

33、总结:(1)矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,线圈中产生正弦式交变电流。(2)从中性面开始计时,感应电动势瞬时值的表达式为e=NBSsint,感应电动势的最大值为Em=NBS。(3)中性面的特点:磁通量最大为m,但e=0。(4)、极值面的特点:感应电动势最大为Em ,但磁通量为0。(四)实例探究交变电流的图象、交变电流的产生过程【例1】一矩形线圈,绕垂直于匀强磁场并位于线圈平面内的固定轴转动,线圈中的感应电动势e随时间t的变化如图所示。下面说法中正确的是 ( )At1时刻通过线圈的磁通量为零Bt2时刻通过线圈的磁通量的绝对值最大Ct3时刻通过线圈的磁通量变化率的绝对值最大D每

34、当e转换方向时,通过线圈的磁通量的绝对值都为最大 交变电流的变化规律【例2】在匀强磁场中有一矩形线圈,从中性面开始绕垂直于磁感线的轴以角速度匀速转动时,产生的交变电动势可以表示为e=Emsint。现在把线圈的转速增为原来的2倍,试分析并写出现在的交变电动势的峰值、交变电动势的瞬时值表达式,画出与其相对应的交变电动势随时间变化的图象。 分析物理图象的要点:一看:看“轴”、看“线”、看“斜率”、看“点”、看“截距”、看“面积”、看“拐点”,并理解其物理意义。二变:掌握“图与图”“图与式”和“图与物”之间的变通关系。三判:在此基础上进行正确的分析和判断。综合应用【例3】 如图所示,匀强磁场的磁感应强

35、度B=2 T,匝数n=6的矩形线圈abcd绕中心轴OO匀速转动,角速度=200 rad/s。已知ab=0.1 m,bc=0.2 m,线圈的总电阻R=40,试求:(1)感应电动势的最大值,感应电流的最大值;(2)设时间t=0时线圈平面与磁感线垂直,写出线圈中感应电动势的瞬时值表达式;(3)画出感应电流的瞬时值i随t变化的图象;(4)当t=30时,穿过线圈的磁通量和线圈中的电流的瞬时值各是多大?(5)线圈从图示位置转过的过程中,感应电动势的平均值是多大? 52 描述交变电流的物理量 一、基础知识1、瞬时电动势:e=Emsint 瞬时电流:i=Imsint2、瞬时电压:u=Umsint 其中Em=N

36、BS3、表征正弦交变电流的物理量。(1)周期和频率(1)周期:交变电流完成一次周期性的变化所用的时间,叫做交变电流的周期,用T表示。(2)频率:交变电流在1 s内完成周期性变化的次数,叫做交变电流的频率,用f表示。T=(3)它们之间成倒数关系。(4) 我国使用的交变电流频率f=50 Hz,周期T=0。02 s。4交变电流的峰值(Em,Im,Um)交变电流的峰值是交变电流在一个周期内所能达到的最大数值,可以用来表示交变电流的电流或电压变化幅度。5、有效值(E、I、U)让交变电流和直流电通过同样的电阻,如果它们在相同时间内产生热量相等,把直流电的值叫做交变电流的有效值。通常用大写字母U、I、E表示

37、有效值。只有正(余)弦交变电流的最大值与有效值有以下关系:I=0.707Im U=0.707Um强调(1)各种使用交变电流的电器设备上所示值为有效值。(2)交变电流表(电压表或电流表)所测值为有效值。(3)计算交变电流的功、功率、热量等用有效值。6、电容器的耐压值: 是指能够加在它两端的最大电压,若电源电压的最大值超过耐压值,电容器可能被击穿。如某电容器标有(8 V,500F)则8 V 即为耐压值。二、实例探究【例1】表示交变电流随时间变化图象如图所示,则交变电流有效值为( )A5AB5 AC3.5AD3.5 A 综合应用【例2】交流发电机矩形线圈边长ab=cd=0.4 m,bc=ad=0.2

38、 m,共50匝,线圈电阻r=1 ,线圈在B=0.2 T的匀强磁场中,绕垂直磁场方向的轴OO以r/s转速匀速转动,外接电阻9,如图所示。求:(1)电压表读数;(2)电阻R上电功率。 53 电感和电容对交变电流的影响一、基础知识:1电感对交变电流的阻碍作用演示电阻、电感对交、直流的影响。实验电路如下图甲、乙所示: 结论:线圈对直流电的阻碍作用只是电阻;而对交变电流的阻碍作用除了电阻之外,还有电感. 由电磁感应的知识可知,当线圈中通过交变电流时,产生自感电动势,阻碍电流的变化。原因:电感对交变电流阻碍作用的大小,用感抗来表示。 感抗决定于线圈的自感系数和交变电流的频率。线圈的自感系数越大,自感作用就

39、越大,感抗就越大;交变电流的频率越高,电流变化越快,自感作用越大,感抗越大。应用:线圈在电子技术中有广泛应用,有两种扼流圈就是利用电感对交变电流的阻碍作用制成的。出示扼流圈,并介绍其构造和作用。(1)低频扼流圈构造:线圈绕在闭合铁芯上,匝数多,自感系数很大。作用:对低频交变电流有很大的阻碍作用。即“通直流、阻交流”。(2)高频扼流圈构造:线圈绕在铁氧体芯上,线圈匝数少,自感系数小。作用:对低频交变电流阻碍小,对高频交变电流阻碍大。即“通低频、阻高频”。2电容器对交变电流的影响:演示1电容对交、直流的影响。实验电路如图所示:演示2电容器对交变电流的影响将刚才实验电路中“1000 F,15 V”的

40、电容器去掉,观察灯泡的亮度, 灯泡的亮度变亮了。说明结论:电容器对交变电流也有阻碍作用,这种阻碍作用叫容抗。 容抗决定于电容器电容的大小和交变电流的频率.电容越大,在同样电压下电容器容纳电荷越多,因此充放电的电流越大,容抗就越小;交变电流的频率越高,充放电进行得越快,充放电电流越大,容抗越小.即电容器的电容越大,交变电流频率越高,容抗越小。电容器具有“通交流、隔直流”“通高频、阻低频”的特点。介绍电感、电容的广泛存在。二、实例探究电感对交变电流的影响【例1】如图所示电路中,L为电感线圈,R为灯泡,电流表内阻为零。电压表内阻无限大,交流电源的电压u=220sin10t V。若保持电压的有效值不变

41、,只将电源频率改为25Hz,下列说法中正确的是 ( )A电流表示数增大B电压表示数减小C灯泡变暗D灯泡变亮电感和电容对交变电流的影响【例2】图所示是电视机电源部分的滤波装置,当输入端输入含有直流成分、交流低频成分的电流后,能在输出端得到较稳定的直流电,试分析其工作原理及各电容和电感的作用。三、巩固练习1关于低频扼流圈,下列说法正确的是 A这种线圈的自感系数很小,对直流有很大的阻碍作用B这种线圈的自感系数很大,对低频电流有很大的阻碍作用C这种线圈的自感系数很大,对高频交流的阻碍作用比低频交流的阻碍作用更大D这种线圈的自感系数很小,对高频交流的阻碍作用很大而对低频交流的阻碍作用很小2在图所示电路中

42、,u是有效值为200 V的交流电源,C是电容器,R是电阻.关于交流电压表的示数,下列说法正确的是 ( )A等于220 VB大于220 VC小于220 VD等于零3在图所示的电路中,a、b两端连接的交流电源既含高频交流,又含低频交流;L是一个25 mH的高频扼流圈,C是一个100 pF的电容器,R是负载电阻,下列说法中正确的是 ( )A.L的作用是“通低频,阻高频”B.C的作用是“通交流,隔直流”C.C的作用是“通高频,阻低频”D.通过R的电流中,低频电流所占的百分比远远大于高频交流所占的百分比4如图所示,交变电流电压的瞬时表达式u=311sin157t V时,三个电流表的示数相同,若电源电压改

43、为u=sin314t V时,则 ( )A电流表 的示数减小B电流表的示数增大C电流表的示数不变54 变压器一、基础知识:1变压器的原理2、变压器就是由闭合铁芯和绕在铁芯上的两个线圈构成的。一个线圈跟电源连接,叫原线圈(初级线圈),另一个线圈跟负载连接,叫副线圈(次级线圈)。两个线圈都是绝缘导线绕制成的。铁芯由涂有绝缘漆的硅钢片叠合而成。3、变压器的结构示意图和符号,如下图所示:说明:互感现象时变压器工作的基础。在原线圈上加交变电压U1,原线圈中就有交变电流,它在铁芯中产生交变的磁通量。这个交变磁通量既穿过原线圈,也穿过副线圈,在原、副线圈中都要引起感应电动势。如副线圈是闭合的,在副线圈中就产生

44、交变电流,它也在铁芯中产生交变的磁通量,在原、副线圈中同样引起感应电动势。副线圈两端的电压就是这样产生的。所以,两个线圈并没有直接接触,通过互感现象,副线圈也能够输出电流。4、变压器线圈两端的电压与匝数的关系: 5、理想变压器:没有能量损失的变压器叫做理想变压器。(1)、,(2)、因为理想变压器没有能量损失,所以P出=P入(3)、又因为P入=U1I1 =P出=U2I2 所以有上式是理想变压器只有一个副线圈时,原副线圈中的电流比公式。当副线圈有多个时,每个副线圈和原线圈之间仍满足电压比等于匝数比,但电流比就只能用P入=U1I1= U2I2+U3I3+U4I4+来计算。6、如果副线圈的电压高于原线圈的电压,这样的变压器叫升压变压器;如果副线圈的电压低于原线圈的电压,这样的变压器叫降压变压器。 升压变压器,n2n1,降压变压器,n2n1。升压变压器,I2I1。因为升压变压器,I2I1,所

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1