数据库原理与应用第二章PPT课件.ppt

上传人:本田雅阁 文档编号:2855555 上传时间:2019-05-29 格式:PPT 页数:83 大小:1,022.56KB
返回 下载 相关 举报
数据库原理与应用第二章PPT课件.ppt_第1页
第1页 / 共83页
数据库原理与应用第二章PPT课件.ppt_第2页
第2页 / 共83页
数据库原理与应用第二章PPT课件.ppt_第3页
第3页 / 共83页
数据库原理与应用第二章PPT课件.ppt_第4页
第4页 / 共83页
数据库原理与应用第二章PPT课件.ppt_第5页
第5页 / 共83页
点击查看更多>>
资源描述

《数据库原理与应用第二章PPT课件.ppt》由会员分享,可在线阅读,更多相关《数据库原理与应用第二章PPT课件.ppt(83页珍藏版)》请在三一文库上搜索。

1、第二章 关系数据库,第二章 关系数据库,2.1 关系模型概述 2.2 关系数据结构 2.3 关系的完整性 2.4 关系代数 2.5 关系演算 2.6 小结,关系数据库系统概述,关系数据库的发展 CODASYL于1962年发表的“信息代数”一文 E.F.Codd从1970年起发表了一系列的论文 20世纪70年代末的实验系统System R和Ingres 从20世纪80年代逐步走向成熟,关系数据库简介,关系数据库应用数学方法来处理数据库中的数据 80年代后,关系数据库系统成为最重要、最流行的数据库系统,关系数据库简介,典型实验系统 System R University INGRES 典型商用系统

2、 ORACLE SYBASE INFORMIX DB2 INGRES,第二章 关系数据库,2.1 关系模型概述 2.2 关系数据结构 2.3 关系的完整性 2.4 关系代数 2.5 关系演算 2.6 小结,2.1 关系模型概述,关系数据库系统 是支持关系模型的数据库系统 关系模型的组成 关系数据结构 关系操作集合 关系完整性约束,1. 关系数据结构,单一的数据结构-关系 现实世界的实体以及实体间的各种联系均用关系来表示 数据的逻辑结构-二维表 从用户角度,关系模型中数据的逻辑结构是一张二维表。,2. 关系操作集合,1) 常用的关系操作 2) 关系操作的特点 3) 关系数据语言的种类 4) 关系

3、数据语言的特点,关系操作集合(续),1) 常用的关系操作 查询 选择、投影、连接、除、并、交、差 数据更新 插入、删除、修改 查询的表达能力是其中最主要的部分,关系操作集合(续),2) 关系操作的特点 集合操作方式,即操作的对象和结果都是集合。 非关系数据模型的数据操作方式:一次一记录 文件系统的数据操作方式,关系操作集合(续),3) 关系数据语言的种类 关系代数语言 用对关系的运算来表达查询要求 典型代表:ISBL,关系操作集合(续),关系数据语言的种类(续) 关系演算语言:用谓词来表达查询要求 元组关系演算语言 谓词变元的基本对象是元组变量 典型代表:APLHA, QUEL 域关系演算语言

4、 谓词变元的基本对象是域变量 典型代表:QBE 具有关系代数和关系演算双重特点的语言 典型代表:SQL,关系操作集合(续),4) 关系数据语言的特点 关系语言是一种高度非过程化的语言 存取路径的选择由DBMS的优化机制来完成 用户不必用循环结构就可以完成数据操作 能够嵌入高级语言中使用 关系代数、元组关系演算和域关系演算三种语言在表达能力上完全等价,3.关系完整性约束,在数据库中数据完整性是指保证数据正确的特性。它包括两方面的内容: 与现实世界中应用需求的数据的相容性和正确性; 数据库内数据之间的相容性和正确性。 在关系数据模型中一般将数据完整性分为三类 实体完整性 参照完整性 用户定义完整性

5、,第二章 关系数据库,2.1 关系模型概述 2.2 关系数据结构 2.3 关系的完整性 2.4 关系代数 2.5 关系演算 2.6 小结,2.2 关系数据结构,关系数据结构非常简单,在关系数据模型中,现实世界中的实体及实体与实体之间的联系均用关系来表示。从逻辑或用户的观点来看,关系就是二维表。,2.2 关系数据结构,2.2.1 关系 2.2.2 关系模式 2.2.3 关系数据库,2.2.1 关系, 域(Domain) 2. 笛卡尔积(Cartesian Product) 3. 关系(Relation), 域(Domain),域是一组具有相同数据类型的值的集合。例: 整数 实数 介于某个取值范围

6、的整数 长度指定长度的字符串集合 男,女 介于某个取值范围的日期,2. 笛卡尔积(Cartesian Product),1) 笛卡尔积 给定一组域D1,D2,Dn,这些域中可以有相同的。D1,D2,Dn的笛卡尔积为: D1D2Dn(d1,d2,dn)diDi,i1,2,n 所有域的所有取值的一个组合 不能重复,笛卡尔积(续),例 给出三个域: D1=SUPERVISOR = 张清玫,刘逸 D2=SPECIALITY=计算机专业,信息专业 D3=POSTGRADUATE=李勇,刘晨,王敏 则D1,D2,D3的笛卡尔积为: D1D2D3 (张清玫,计算机专业,李勇),(张清玫,计算机专业,刘晨),

7、 (张清玫,计算机专业,王敏),(张清玫,信息专业,李勇), (张清玫,信息专业,刘晨),(张清玫,信息专业,王敏), (刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨), (刘逸,计算机专业,王敏),(刘逸,信息专业,李勇), (刘逸,信息专业,刘晨),(刘逸,信息专业,王敏) ,笛卡尔积(续),2) 元组(Tuple) 笛卡尔积中每一个元素(d1,d2,dn)叫作一个n元组(n-tuple)或简称元组。 3) 分量(Component) 笛卡尔积元素(d1,d2,dn)中的每一个值di叫作一个分量。,笛卡尔积(续),4) 基数(Cardinal number) 若Di(i1,2,n)为

8、有限集,其基数为mi(i1,2,n),则D1D2Dn的基数M为: 在上例中,基数:22312,即D1D2D3共有22312个元组,笛卡尔积(续),5)笛卡尔积的表示方法 笛卡尔积可表示为一个二维表。表中的每行对应一个元组,表中的每列对应一个域。 在上例中,12个元组可列成一张二维表,笛卡尔积(续),3. 关系(Relation),1) 关系 D1D2Dn的子集叫作在域D1,D2,Dn上的关系,表示为 R(D1,D2,Dn) R:关系名 n:关系的目或度(Degree),关系(续),注意: 关系是笛卡尔积的有限子集。无限关系在数据库系统中是无意义的。 由于笛卡尔积不满足交换律,即 (d1,d2,

9、dn )(d2,d1,dn ) 但关系满足交换律,即 (d1,d2 ,di ,dj ,dn)=(d1,d2 ,dj,di ,dn) (i,j = 1,2,n) 解决方法:为关系的每个列附加一个属性名以取消关系元组的有序性,关系(续),例 在表2.1 的笛卡尔积中取出有实际意义的元组 来构造关系 关系:SAP(SUPERVISOR,SPECIALITY,POSTGRADUATE) 关系名,属性名 假设:导师与专业:1:1,导师与研究生:1:n 于是:SAP关系可以包含三个元组 (张清玫,信息专业,李勇), (张清玫,信息专业,刘晨), (刘逸,信息专业,王敏) ,关系(续),2) 元组 关系中的

10、每个元素是关系中的元组,通常用t表示。 3) 单元关系与二元关系 当n=1时,称该关系为单元关系(Unary relation)。 当n=2时,称该关系为二元关系(Binary relation)。,关系(续),4) 关系的表示 关系也是一个二维表,表的每行对应一个元组,表的每列对应一个域。,关系(续),5) 属性 关系中不同列可以对应相同的域,为了加以区分,必须对每列起一个名字,称为属性(Attribute)。 n目关系必有n个属性。,关系(续),6) 码 候选码(Candidate key) 若关系中的某一属性组的值能唯一地标识 一个元组,则称该属性组为候选码 在最简单的情况下,候选码只包

11、含一个属性。 称为全码(All-key) 在最极端的情况下,关系模式的所有属性组 是这个关系模式的候选码,称为全码(All- key),关系(续),码(续) 主码 若一个关系有多个候选码,则选定其中一个 为主码(Primary key) 主码的诸属性称为主属性(Prime attribute)。 不包含在任何侯选码中的属性称为非码属性 (Non-key attribute),关系(续),7) 三类关系 基本关系(基本表或基表) 实际存在的表,是实际存储数据的逻辑表示 查询表 查询结果对应的表 视图表 由基本表或其他视图表导出的表,是虚表,不对 应实际存储的数据,8) 基本关系的性质, 列是同质

12、的(Homogeneous) 每一列中的分量是同一类型的数据,来自同 一个域 不同的列可出自同一个域 其中的每一列称为一个属性 不同的属性要给予不同的属性名,基本关系的性质(续),上例中也可以只给出两个域: 人(PERSON)=张清玫,刘逸,李勇,刘晨,王敏 专业(SPECIALITY)=计算机专业,信息专业 SAP关系的导师属性和研究生属性都从PERSON域中取值 为了避免混淆,必须给这两个属性取不同的属性名,而不能直接使 用域名。 例如定义: 导师属性名为SUPERVISOR-PERSON(或SUPERVISOR) 研究生属性名为POSTGRADUATE-PERSON(或POSTGRADU

13、ATE),基本关系的性质(续), 列的顺序无所谓 列的次序可以任意交换 遵循这一性质的数据库产品(如ORACLE), 增加新属性时,永远是插至最后一列 但也有许多关系数据库产品没有遵循这一 性质,例如FoxPro仍然区分了属性顺序,基本关系的性质(续), 任意两个元组不能完全相同 由笛卡尔积的性质决定 但许多关系数据库产品没有遵循这一性质。 例如: Oracle,FoxPro等都允许关系表中存在两个完全相同 的元组,除非用户特别定义了相应的约束条件。,基本关系的性质(续), 行的顺序无所谓 行的次序可以任意交换 遵循这一性质的数据库产品(如ORACLE), 插入一个元组时永远插至最后一行 但也

14、有许多关系数据库产品没有遵循这一性 质,例如FoxPro仍然区分了元组的顺序,基本关系的性质(续), 分量必须取原子值 每一个分量都必须是不可分的数据项。 这是规范条件中最基本的一条,2.2 关系数据结构,2.2.1 关系 2.2.2 关系模式 2.2.3 关系数据库,2.2.2 关系模式,1什么是关系模式 2定义关系模式 3. 关系模式与关系,1什么是关系模式,关系模式(Relation Schema)是型-静态稳定 关系是值-动态变化,因为操作更新数据库中数据 关系模式需要描述: 域:元组语义以及完整性约束条件 元组:该关系所涉及的属性集的笛卡尔积的一个元素 关系是元组的集合,笛卡尔积的子

15、集。关系模式必须指出这个元组集合的结构,由哪些属性构成,这些属性来自哪些域,属性与域之间的映像关系。关系由元组语义-n目谓词确定, n目谓词为真的笛卡尔积中的元素的全体就构成了该关系模式的关系。,2定义关系模式,定义:关系的描述称为关系模式,可以形式化地表示为: R(U,D,dom,F) R 关系名 U 组成该关系的属性名集合 D 属性组U中属性所来自的域 dom 属性向域的映象集合 F 属性间的数据依赖关系集合,定义关系模式 (续),例: 导师和研究生出自同一个域人, 必须取不同的属性名,并在模式中定义属性向域的映象,即说明它们分别出自哪个域: dom(SUPERVISOR-PERSON)

16、= dom(POSTGRADUATE-PERSON) =PERSON,定义关系模式 (续),关系模式通常可以简记为 R (U) 或 R (A1,A2,An) R 关系名 A1,A2,An 属性名 注:域名及属性向域的映象常常直接说明为 属性的类型、长度,3. 关系模式与关系,关系模式 对关系的描述 静态的、稳定的 关系 关系模式在某一时刻的状态或内容 动态的、随时间不断变化的 关系模式和关系往往统称为关系 通过上下文加以区别,2.2 关系数据结构,2.2.1 关系 2.2.2 关系模式 2.2.3 关系数据库,2.2.3 关系数据库,1. 关系数据库 2. 关系数据库的型与值,1. 关系数据库

17、,在一个给定的应用领域中,所有实体及实 体之间联系的关系的集合构成一个关系数 据库。,2. 关系数据库的型与值,关系数据库也有型和值之分 关系数据库的型称为关系数据库模式,是对关系数据库的描述 若干域的定义 在这些域上定义的若干关系模式 关系数据库的值是这些关系模式在某一时刻对应的关系的集合,通常简称为关系数据库,第二章 关系数据库,2.1 关系模型概述 2.2 关系数据结构 2.3 关系的完整性 2.4 关系代数 2.5 关系演算 2.6 小结,2.3 关系的完整性,关系模型的完整性规则是对关系的某种约束条件。 关系模型中三类完整性约束: 实体完整性 参照完整性 用户定义的完整性 实体完整性

18、和参照完整性是关系模型必须满足的完整性约束条件,被称作是关系的两个不变性,应该由关系系统自动支持。,关系的完整性(续),2.3.1 实体完整性 2.3.2. 参照完整性 2.3.3. 用户定义的完整性,2.3.1 实体完整性,实体完整性规则(Entity Integrity) 若属性A是基本关系R的主属性,则属性 A不能取空值 例 SAP(SUPERVISOR,SPECIALITY,POSTGRADUATE) 如果POSTGRADUATE属性为主码,因为前两个属性一定会重,(假设研究生不会重名),则其不能取空值,实体完整性规则,实体完整性是要保证关系中的每个元组都是可识别和唯一的。 实体完整性

19、规则的具体内容是:若属性A是关系R的主属性,则属性A不可以为空值。 实体完整性是关系模型必须满足的完整性约束条件,也称作是关系的不变性。 关系数据库管理系统可以用主关键字实现实体完整性,这是由关系系统自动支持的。,对实体完整性规则的几点说明,实体完整性规则是针对关系而言的,而关系则对应一个现实世界中的实体集。例如,仓库关系对应现实世界中的仓库实体集。 现实世界中的实体是可区分的,它们具有某种标识特征;相应地,关系中的元组也是可区分的,在关系中用主关键字做唯一性标识。 主关键字中的属性、即主属性不能取空值。如果主属性取空值,则意味着关系中的某个元组是不可标识的,即存在不可区分的实体,这与实体的定

20、义也是矛盾的。,关系的完整性,2.3.1 实体完整性 2.3.2. 参照完整性 2.3.3. 用户定义的完整性,2.3.2 参照完整性,1. 关系间的引用 2. 外码 3. 参照完整性规则,1. 关系间的引用,在关系模型中实体及实体间的联系都是用 关系来描述的,因此可能存在着关系与关 系间的引用。 例1 学生实体、专业实体以及专业与学生 间的一对多联系 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名),两个关系间存在属性的引用,即学生关系引用了专业关系的主码“专业号”。学生关系中的专业号值必须是确实存在的专业,即,学生关系中的某个属性的取值需要参照专业关系的属性取值。,学生(学号

21、,姓名,性别,专业号,年龄) 专业(专业号,专业名),关系间的引用(续),例2 学生、课程、学生与课程之间的多对 多联系 学生(学号,姓名,性别,专业号,年龄) 课程(课程号,课程名,学分) 选修(学号,课程号,成绩),例2要说明的也是属性间存在引用。同样,选修关系中的学号必须是学生关系中有记录的学生,选修关系中的课程号值必须是课程关系中确实存在的。选修关系中某些属性的取值需要参照其他关系中属性的取值。,学生,学生选课,课程,关系间的引用(续),例3 学生实体及其内部的领导联系(一对多) 学生(学号,姓名,性别,专业号,年龄,班长) 班长引用了本关系中“学号”属性,即必须是确实存在的学生的学号

22、,2外码(Foreign Key),设F是基本关系R的一个或一组属性,但不 是关系R的码。如果F与基本关系S的主码 Ks相对应,则称F是基本关系R的外码 基本关系R称为参照关系(Referencing Relation) 基本关系S称为被参照关系(Referenced Relation)或目标关系(Target Relation)。,外码(续),说明 关系R和S不一定是不同的关系 目标关系S的主码Ks 和参照关系的外码F必须定义在同一个(或一组)域上 外码并不一定要与相应的主码同名 当外码与相应的主码属于不同关系时,往往 取相同的名字,以便于识别,3. 参照完整性规则,若属性(或属性组)F是基

23、本关系R的外码 它与基本关系S的主码Ks相对应(基本关 系R和S不一定是不同的关系),则对 于R中每个元组在F上的值必须为: 或者取空值(F的每个属性值均为空值) 或者等于S中某个元组的主码值。,参照完整性规则(续),学生关系中每个元组的“专业号”属性只 取下面两类值: (1)空值,表示尚未给该学生分配专业 (2)非空值,这时该值必须是专业关系中某个元组的“专业号”值,表示该学生不可能分配到一个不存在的专业中,例1中“专业号”为学生关系的外码,专业关系为被参照关系 专业号 学生关系 专业关系 例2中(略) 学号 课程号 学生关系 选修关系 课程关系,参照完整性规则(续),选修(学号,课程号,成

24、绩) “学号”和“课程号”是选修关系中的主属性 按照实体完整性和参照完整性规则,它们 只能取相应被参照关系中已经存在的主码 值,参照完整性规则(续),学生(学号,姓名,性别,专业号,年龄,班长) “班长”属性值可以取两类值: (1)空值,表示该学生所在班级尚未选出班长,或该学生本人即是班长; (2)非空值,这时该值必须是本关系中某个元组的学号值,关系的完整性(续),2.3.1 实体完整性 2.3.2. 参照完整性 2.3.3. 用户定义的完整性,2.3.3 用户定义的完整性,一种与应用密切相关的数据完整性约束,如 某个属性的值必须唯一 某个非主属性不能取空值 某个属性的取值必须在某个范围内 某

25、些属性值之间应该满足一定的函数关系等 类似以上的约束不是关系数据模型本身所要求的,而是为了满足具体应用必须的语义要求 在用户定义完整性中最常见的是限定属性的取值范围,即对值域的约束,所以在用户定义完整性中最常见的是域完整性约束。,用户定义完整性约束的作用,执行插入操作时检查完整性 执行插入操作时需要分别检查实体完整性规则、参照完整性规则和用户定义完整性规则。 执行删除操作时检查完整性 执行删除操作时一般只需要检查参照完整性规则。 执行更新操作时检查完整性 执行更新操作可以看作是先删除旧的元组,然后再插入新的元组。所以执行更新操作时的完整性检查综合了上述两种情况。,用户定义的完整性(续),例:

26、课程(课程号,课程名,学分) “课程名”属性必须取唯一值 非主属性“课程名”也不能取空值 “学分”属性只能取值1,2,3,4,2.4关系代数,是一种抽象的查询语言,是关系数据操纵语言的一种传统表达方式,是用对关系的运算表达查询的。 三大要素:运算对象、运算符、运算结果 运算符:集合运算符,-, 专门的关系运算符 算术比较符 逻辑运算符,引入记号,关系模式R (A1,A2,An),tR表示R的一个元组t。tAi 表示属性元组t 中相应于属性Ai的分量 若A=Ai1,Ai2,Aik,其中Ai1,Ai2, ,Aik是A1,A2,An的一部分A称作属性列或域列。 元组的连接 给定关系R(X,Z), 定义当tX=x时,x在R中的象集为 表示R中属性组X上值为x的诸元组在Z上分量的集合。,2.4关系代数,关系的数据操作集合 查询 选择、投影、连接、除、并、交、差 数据更新 插入、删除、修改,关系的完整性约束 实体完整性 参照完整性 外码 用户定义的完整性,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1