04钢筋混凝土受压构件.ppt

上传人:本田雅阁 文档编号:2875610 上传时间:2019-05-31 格式:PPT 页数:58 大小:632.02KB
返回 下载 相关 举报
04钢筋混凝土受压构件.ppt_第1页
第1页 / 共58页
04钢筋混凝土受压构件.ppt_第2页
第2页 / 共58页
04钢筋混凝土受压构件.ppt_第3页
第3页 / 共58页
04钢筋混凝土受压构件.ppt_第4页
第4页 / 共58页
04钢筋混凝土受压构件.ppt_第5页
第5页 / 共58页
点击查看更多>>
资源描述

《04钢筋混凝土受压构件.ppt》由会员分享,可在线阅读,更多相关《04钢筋混凝土受压构件.ppt(58页珍藏版)》请在三一文库上搜索。

1、工 程 结 构,第四章 钢筋混凝土受压构件,同济大学电子音像出版社,普通高等教育“十一五”国家级规划教材,1 熟悉受压构件的构造要求;,2 掌握对称配筋矩形截面偏心受压构件正截面承载力计算方法;,3 理解偏心受压构件正截面的两种破坏形态及其判别方法。,主要以承受轴向压力为主,通常还有弯矩和剪力作用,概 述,受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整个结构的损坏,甚至倒塌。,轴心受压构件,纵筋的主要作用: 帮助混凝土受压,箍筋的主要作用: 防止纵向受力钢筋压屈,偏心受压构件,纵筋的主要作用:,一部分纵筋帮助混凝土受压,另一部分纵筋抵抗由偏心压 力产生的弯矩,箍筋的主要作用:

2、 抵抗剪力,一 受压构件构造要求 轴心受压:一般采用方形、矩形、圆形和 正多边形 偏心受压构件:一般采用矩形、工字形、T形和环形,第一节 轴心受压构件正截面受压承载力计算,材料强度要求 混凝土:C25 C30 C35 C40 等 钢筋: 纵筋:HRB400级、HRB335级和 RRB400级 箍筋:HPB235级、HRB335级 也可采用HRB400级,纵筋 全部纵筋配筋率不应小于0.6%;不宜大于5% 一侧钢筋配筋率不应小于0.2% 直径不宜小于12mm,常用1632mm,宜用粗钢筋,纵筋净距: 不应小于50mm; 预制柱,不应小于30mm和1.5d(d为钢筋的最大直径) 纵筋中距不应大于3

3、50mm。 纵筋的连接接头:(宜设置在受力较小处) 可采用机械连接接头、焊接接头和搭接接头,对于直径大于28mm的受拉钢筋和直径大于32mm的受压钢筋,不宜采用绑扎的搭接接头。,箍筋,箍筋形式:封闭式 箍筋间距:在绑扎骨架中不应大于15d;在焊接骨 架中则不应大于20d (d为纵筋最小直 径),且不应大于400mm,也不大于 构件横截面的短边尺寸 箍筋直径:不应小于 d4 (d为纵筋最大直径),且 不应小于 6mm。 当纵筋配筋率超过 3时,箍筋直径不应小于8mm,其间距不应大于10d,且不应大于200mm。 当截面短边不大于400mm,且纵筋不多于四根时,可不设置复合箍筋;当截面短边大于40

4、0mm且纵筋多于3根时,应设置复合箍筋。,在纵筋搭接长度范围内: 箍筋的直径:不宜小于搭接钢筋直径的0.25倍; 箍筋间距:当搭接钢筋为受拉时,不应大于5d, 且不应大于100mm; 当搭接钢筋为受压时,不应大于10d, 且不应大于 200mm; (d为受力钢筋中的最小直径) 当搭接的受压钢筋直径大于25mm 时,应在搭接接头两个端面外50mm 范围内各设置两根箍筋 。,截面形状复杂的构件,不可采用具有内折角的箍筋, 在实际结构中,理想的轴心受压构件几乎是不存在的。 通常由于施工制造的误差、荷载作用位置的偏差、混凝土的不均匀性等原因,往往存在一定的初始偏心距。 但有些构件,如以恒载为主的等跨多

5、层房屋的内柱、桁架中的受压腹杆等,主要承受轴向压力,可近似按轴心受压构件计算。,二 轴心受压构件的承载力计算,1.短柱的受力特点和破坏形态 钢筋混凝土短柱破坏时 压应变在0.00250.0035 之间,规范取为0.002 相应地,纵筋的应力为,用,表示钢筋的抗压强度设计值,2细长轴心受压构件的承载力降低现象,初始偏心距,附加弯矩和侧向挠度,加大了原来的初始偏心距,构件承载力降低,3.轴心受压构件的承载力计算,轴心受压短柱,轴心受压长柱,稳定系数,稳定系数j 主要与柱的长细比 l0/i 有关,系数0.9 是可靠度调整系数,稳定系数,4. 设计方法 (1)截面设计 已知:轴心压力设计值N,材料强度

6、等级fc、fy 构件计算长度l0 ,截面面积bxh 求:纵向受压钢筋面积As (2)截面复核,压弯构件 偏心受压构件,偏心受压构件的受力性能和破坏形态界于轴心受压构件和受弯构件。,第二节 偏心受压构件正截面受压承载力计算,一、破坏形态,偏心受压构件的破坏形态与偏心距e0和纵向钢筋配筋率有关 1. 受拉破坏,M较大,N较小,偏心距e0较大,As配筋合适, 截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展较快,首先达到屈服。 此后,裂缝迅速开展,受压区高度减小 最后受压侧钢筋As 受压屈服,压区混凝土压碎而达到破坏。 这种破坏具有明显预兆,变形能力较大,破坏特征与配有受压钢筋的适筋梁相似,承

7、载力主要取决于受拉侧钢筋。 形成这种破坏的条件是:偏心距e0较大,且受拉侧纵向钢筋配筋率合适,通常称为大偏心受压。,2. 受压破坏 产生受压破坏的条件有两种情况: 当相对偏心距e0/h0较小,或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时,As太多, 截面受压侧混凝土和钢筋的受力较大, 而受拉侧钢筋应力较小, 当相对偏心距e0/h0很小时,受拉侧还可能出现受压情况。 第二种情况在设计应予避免,因此受压破坏一般为偏心距较小的情况,故常称为小偏心受压。,2. 受压破坏 产生受压破坏的条件有两种情况: 当相对偏心距e0/h0较小,或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时

8、,二 大、小偏心受压破坏的界限 即受拉钢筋屈服与受压区混凝土边缘极限压应变ecu同时达到 与适筋梁和超筋梁的界限情况类似。 因此,相对界限受压区高度仍为,当x xb时,当x xb时,受拉破坏(大偏心受压),受压破坏(小偏心受压),三 附加偏心距和偏心距增大系数,由于施工误差、计算偏差及材料的不均匀等原因,实际工程中不存在理想的轴心受压构件。为考虑这些因素的不利影响,引入附加偏心距ea,即在正截面压弯承载力计算中,偏心距取计算偏心距e0=M/N与附加偏心距ea之和,称为初始偏心距ei,参考以往工程经验和国外规范,附加偏心距ea取20mm与h/30 两者中的较大值,此处h是指偏心方向的截面尺寸。,

9、一、附加偏心距,二、偏心距增大系数, 由于侧向挠曲变形,轴向力将产生二阶效应,引起附加弯矩 对于长细比较大的构件,二阶效应引起附加弯矩不能忽略。 图示典型偏心受压柱,跨中侧向挠度为 f 。 对跨中截面,轴力N的偏心距为ei + f ,即跨中截面的弯矩为 M =N ( ei + f )。 在截面和初始偏心距相同的情况下,柱的长细比l0/h不同,侧向挠度 f 的大小不同,影响程度会有很大差别,将产生不同的破坏类型。, 对于长细比l0/h8的短柱 侧向挠度 f 与初始偏心距ei相比很小, 柱跨中弯矩M=N(ei+f ) 随轴力N的增加基本呈线性增长, 直至达到截面承载力极限状态产生破坏。 对短柱可忽

10、略挠度f影响。, 长细比l0/h =830的中长柱 f 与ei相比已不能忽略。 f 随轴力增大而增大,柱跨中弯矩M = N ( ei + f ) 的增长速度大于轴力N的增长速度, 即M随N 的增加呈明显的非线性增长, 虽然最终在M和N的共同作用下达到截面承载力极限状态,但轴向承载力明显低于同样截面和初始偏心距情况下的短柱。 因此,对于中长柱,在设计中应考虑附加挠度 f 对弯矩增大的影响。,长细比l0/h 30的长柱 侧向挠度 f 的影响已很大 在未达到截面承载力极限状态之前,侧向挠度 f 已呈不稳定发展 即柱的轴向荷载最大值发生在荷载增长曲线与截面承载力Nu-Mu相关曲线相交之前 这种破坏为失

11、稳破坏,应进行专门计算,偏心距增大系数,,,,,取h=1.1h0,l0,偏心距增大系数,,,,,取h=1.1h0,l0,一、不对称配筋截面设计 1. 大偏心受压(受拉破坏),已知:截面尺寸(bh)、材料强度( fc、fy,fy )、构件长细比(l0/h)以及轴力N和弯矩M设计值, 若heieib.min=0.3h0, 一般可先按大偏心受压情况计算,四 矩形截面正截面承载力计算,As和As均未知时,两个基本方程中有三个未知数,As、As和 x,故无唯一解。 与双筋梁类似,为使总配筋面积(As+As)最小? 可取x=xbh0得,若As0.002bh? 则取As=0.002bh,然后按As为已知情况

12、计算。,若Asrminbh ? 应取As=rminbh。,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rminbh? 应取As=rminbh。,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0,若As若小于rminbh 应取As=rminbh。,则应按As为未知情况重新计算确定As,则可偏于安

13、全的近似取x=2a,按下式确定As,若x2a,As为已知时,当As已知时,两个基本方程有二个未知数As 和 x,有唯一解。 先由第二式求解x,若x 2a,则可将代入第一式得,若x xbh0?,若As若小于rminbh? 应取As=rminbh。,若As若小于rminbh? 应取As=rminbh。,则应按As为未知情况重新计算确定As,则可偏于安全的近似取x=2a,按下式确定As,若x2a ?,2. 小偏心受压(受压破坏) heieib.min=0.3h0,两个基本方程中有三个未知数,As、As和x,故无唯一解。,小偏心受压,即x xb,ss - fy ,则As未达到受压屈服 因此,当xb x

14、 (2b -xb),As 无论怎样配筋,都不能达到屈服,为使用钢量最小,故可取As =max(0.45ft/fy, 0.002bh)。,另一方面,当偏心距很小时,如附加偏心距ea与荷载偏心距e0方向相反, 则可能发生As一侧混凝土首先达到受压破坏的情况。 此时通常为全截面受压,由图示截面应力分布,对As取矩,可得,,e=0.5h-a-(e0-ea), h0=h-a,确定As后,就只有x 和As两个未知数,故可得唯一解。 根据求得的x ,可分为三种情况,若x (2b -xb),ss= -fy,基本公式转化为下式,,若x h0h,应取x=h,同时应取a =1,代入基本公式直接解得As,重新求解x

15、和As,由基本公式求解x 和As的具体运算是很麻烦的。 迭代计算方法 用相对受压区高度x ,,在小偏压范围x =xb1.1,,对于HRB335级钢筋和C50混凝土,as在0.40.5之间,近似取0.45,as=x(1-0.5x) 变化很小。,As(1)的误差最大约为12%。 如需进一步求较为精确的解,可将As(1)代入基本公式求得x,,取as =0.45,试分析证明上述迭代是收敛的,且收敛速度很快。,二、不对称配筋截面复核,在截面尺寸(bh)、截面配筋As和As、材料强度(fc、fy,f y)、以及构件长细比(l0/h)均为已知时,根据构件轴力和弯矩作用方式,截面承载力复核分为两种情况: 1.

16、 给定轴力设计值N,求弯矩作用平面的弯矩设计值M,2. 给定轴力作用的偏心距e0,求轴力设计值N,1. 给定轴力设计值N,求弯矩作用平面的弯矩设计值M 由于给定截面尺寸、配筋和材料强度均已知,未知数? 只有x和M两个。,若N Nb,为大偏心受压,,若N Nb,为小偏心受压,,由(a)式求x以及偏心距增大系数h,代入(b)式求e0,弯矩设计值为M=N e0。,2. 给定轴力作用的偏心距e0,求轴力设计值N,若heie0b,为大偏心受压,未知数为x和N两个,联立求解得x和N。,若heie0b,为小偏心受压 联立求解得x和N, 尚应考虑As一侧混凝土可能先压坏的情况,e=0.5h-a-(e0-ea)

17、,h0=h-a,另一方面,当构件在垂直于弯矩作用平面内的长细比l0/b较大时,尚应根据l0/b确定的稳定系数j,按轴心受压情况验算垂直于弯矩作用平面的受压承载力 上面求得的N 比较后,取较小值。,三、对称配筋截面 实际工程中,受压构件常承受变号弯矩作用,当弯矩数值相差不大,可采用对称配筋。 采用对称配筋不会在施工中产生差错,故有时为方便施工或对于装配式构件,也采用对称配筋。 对称配筋截面,即As=As,fy = fy,a = a,其界限破坏状态时的轴力为Nb=a fcbxbh0。,因此,除要考虑偏心距大小外,还要根据轴力大小(N Nb)的情况判别属于哪一种偏心受力情况。,1. 当heieib.

18、min=0.3h0,且N Nb时,为大偏心受压 x=N /a fcb,若x=N /a fcb2a,可近似取x=2a,对受压钢筋合力点取矩可得,e = hei - 0.5h + a,2. 当heieib.min=0.3h0,为小偏心受压 或heieib.min=0.3h0,但N Nb时,为小偏心受压,由第一式解得,代入第二式得,这是一个x 的三次方程,设计中计算很麻烦。为简化计算,如前所说,可近似取as=x(10.5x)在小偏压范围的平均值,,代入上式,由前述迭代法可知,上式配筋实为第二次迭代的近似值,与精确解的误差已很小,满足一般设计精度要求。 对称配筋截面复核的计算与非对称配筋情况相同。,四

19、、Nu-Mu相关曲线,对于给定的截面、材料强度和配筋,达到正截面承载力极限状态时,其压力和弯矩是相互关联的,可用一条Nu-Mu相关曲线表示。根据正截面承载力的计算假定,可以直接采用以下方法求得Nu-Mu相关曲线:,取受压边缘混凝土压应变等于ecu; 取受拉侧边缘应变; 根据截面应变分布,以及混凝土和钢筋的应力-应变关系,确定混凝土的应力分布以及受拉钢筋和受压钢筋的应力; 由平衡条件计算截面的压力Nu和弯矩Mu; 调整受拉侧边缘应变,重复和,理论计算结果 等效矩形计算结果,Nu-Mu相关曲线反映了在压力和弯矩共同作用下正截面承载力的规律,具有以下一些特点:,相关曲线上的任一点代表截面处于正截面承

20、载力极限状态时的一种内力组合。 如一组内力(N,M)在曲线内侧说明截面未达到极限状态,是安全的; 如(N,M)在曲线外侧,则表明截面承载力不足;,当弯矩为零时,轴向承载力达到最大,即为轴心受压承载力N0(A点); 当轴力为零时,为受纯弯承载力M0(C点);,截面受弯承载力Mu与作用的轴压力N大小有关; 当轴压力较小时,Mu随N的增加而增加(CB段); 当轴压力较大时,Mu随N的增加而减小(AB段);,截面受弯承载力在B点达(Nb,Mb)到最大,该点近似为界限破坏; CB段(NNb)为受拉破坏, AB段(N Nb)为受压破坏;,对于对称配筋截面,达到界限破坏时的轴力Nb是一致的。,如截面尺寸和材料强度保持不变,Nu-Mu相关曲线随配筋率的增加而向外侧增大;,同济大学出版社,Thank You !,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1