1465昆虫的感觉器官和仿生学.ppt

上传人:本田雅阁 文档编号:3009239 上传时间:2019-06-23 格式:PPT 页数:124 大小:8.79MB
返回 下载 相关 举报
1465昆虫的感觉器官和仿生学.ppt_第1页
第1页 / 共124页
1465昆虫的感觉器官和仿生学.ppt_第2页
第2页 / 共124页
1465昆虫的感觉器官和仿生学.ppt_第3页
第3页 / 共124页
1465昆虫的感觉器官和仿生学.ppt_第4页
第4页 / 共124页
1465昆虫的感觉器官和仿生学.ppt_第5页
第5页 / 共124页
点击查看更多>>
资源描述

《1465昆虫的感觉器官和仿生学.ppt》由会员分享,可在线阅读,更多相关《1465昆虫的感觉器官和仿生学.ppt(124页珍藏版)》请在三一文库上搜索。

1、昆虫(器官)和仿生学,1,一、常见的昆虫感觉器官,头部的主要感觉器官包括触角、单眼和复眼。在口器各组成部分上也有感觉器。,2,鞭节flagellum:触角的端节,常分成若干亚节,此节在不同昆虫中变化很大。,触角及其构造:基本上由3节构成: 柄节scape:最基部的一节,常粗短 梗节pedicel:触角的第2节,较小。,3,1、线状(丝状):触角细长,呈圆筒形。除第一、二节稍大外,其余各节大小、形状相似,逐渐向端部变细。例如蝗虫、蟋蟀及一些蛾类等。,(二)触角的类型,4,2、念珠状:鞭节由近似圆珠形的小节组成,大小一致,象一串念珠。例如白蚁、褐蛉等。,5,6,3、锯齿状:鞭节各亚节的端部向一边突

2、出呈角状,触角看起来象一个锯条。例如叩头虫、雌性绿豆象等。,7,4、栉齿状:鞭节各亚节向一边突出很长,形如梳子。例如雄性绿豆象等。,8,绿豆象,9,antenna,叩头甲,10,5、双栉齿状(羽状):鞭节各亚节向两边突出成细枝状,很象鸟的羽毛。例如雄性蚕蛾、毒蛾等。,11,12,6、棒状(球杆状):触角细长,近端部的数节膨大如椭圆球状。例如蝶类(是鳞翅目中蝶与蛾的主要区别特征之一)、蚁蛉等。,13,14,7、锤状:鞭节端部数节突然膨大,形状如锤。例如瓢虫、郭公虫等。,15,8、鳃叶状:端部数节扩大成片状,可以开合,状似鱼鳃。这种触角为鞘翅目金龟子类所特有。,16,17,9、膝状(肘状):柄节特

3、别长,梗节短小,鞭节由大小相似的亚节组成,在柄节和梗节之间成肘状或膝状弯曲。例如象鼻虫、蜜蜂、小蜂等。,18,19,2,1,1. 蜜蜂的触角;2. 第3节基部的感觉器,20,10、环毛状:除基部两节外,每节具有一圈细毛,近基部的毛较长。列如雄性的蚊、摇蚊等。,21,22,11、刚毛状:触角很短,基部的一、二节较大,其余的节突然缩小,细似刚毛。例如蜻蜓、蝉、飞虱等。,23,24,12、具芒状:触角很短,鞭节仅一节,较柄节和梗节粗大,其上有一根刚毛状或芒状构造,称为触角芒。触角芒有的光滑,有的具毛或呈羽状。这类触角为双翅目蝇类所特有。,25,26,蝴蝶的触角用来感觉味道,27,蚊子的触角可以听到声

4、音。,28,蚂蚁、蜜蜂见面后互相碰触角,传递信息。,29,仰泳蝽靠触角使自己在游泳时保持身体的平衡。,30,二、复 眼,位置:颅侧区,但常有变化,如突眼蝇、豉甲等。 形状:多圆形、卵圆形。 复眼由若干大小不一致的小眼组成。,家蝇的复眼,31,用来辨别物体,特别是运动的物体,是最重要的视觉器官。 成虫和不全变态类的若虫和稚虫,一般都有一对复眼。 多数昆虫复眼能感受的光波波谱范围也比人眼宽广。但是,昆虫的视程远不及人类。 另外,绝大多数昆虫是色盲,如蜜蜂不能分辨出青色和绿色,也不能分辨出红色和黑色。,32,牛虻的复眼,33,突眼蝇的复眼,34,天牛的复眼,35,水栖的豉甲科昆虫上、下分离的复眼使得

5、它们能在水面游泳时能同时看清楚水表和水中的情况。,36,37,许多“点的影像”互相结合便组成整个物体“镶嵌的影像”,38,翅wing,39,40,鳞片,41,二、仿生学的基本内涵,仿生学(Bionics) 模仿生物系统的原理以建造技术系统,或者使人造技术系统具有生物系统特征或类似特征的科学,仿生学是一门建立在多学科边缘上的综合 性学科,包括生理学、神经学、医学、化 学、数学、电子学、信息学等学科。,42,前言,生物体,生物模型,数学模型,技术模型,技术装置,仿生学的研究方法,43,真正最高水平的仿生学应该是制造生命。(如用化学分子,或者用一个分子构筑具有生理活性的物质,如牛胰岛素结晶。有争议的

6、课题,涉及到伦理学, ),44,结晶牛胰岛素(crystallized bovine insulin)是牛的胰岛素结晶。牛胰岛素是牛胰脏中胰岛-细胞所分泌的一种调节糖代谢的蛋白质激素。其一级结构1955年由英国桑格(S.Sanger)首先确定牛胰岛素中氨基酸的组成和排列顺序。桑格也因此荣获1958年诺贝尔化学奖。 从1958年开始,中国科学院上海生物化学研究所、中国科学院上海有机化学研究所和北京大学生物系三个单位联合,以王应睐为首,由龚岳亭、邹承鲁、杜雨花、季爱雪、邢其毅、汪猷、徐杰诚等人共同组成一个协作组,在前人对胰岛素结构和肽链合成方法研究的基础上,开始探索用化学方法合成胰岛素。,45,经

7、过周密研究,他们确立了合成牛胰岛素的程序。合成工作是分三步完成的: 第一步,先把天然胰岛素拆成两条链,再把它们重新合成为胰岛素,并于1959年突破了这一难题,重新合成的胰岛素是同原来活力相同、形状一样的结晶。 第二步,在合成了胰岛素的两条链后,用人工合成的B链同天然的A链相连接。这种牛胰岛素的半合成在1964年获得成功。 第三步,把经过考验的半合成的A链与B链相结合。在1965年9月17日完成了结晶牛胰岛素的全合成。 经过严格鉴定,它的结构、生物活力、物理化学性质、结晶形状都和天然的牛胰岛素完全一样。 这是世界上第一个人工合成的蛋白质。这项成果获1982年中国自然科学一等奖。王应睐因此被著名英

8、国学者李约瑟(Joseph Needham,1900-1995)誉为“中国生物化学的奠基人之一”。,46,蛋白质研究一直被喻为破解生命之谜的关节点。胰岛素是蛋白质的一种。由此,胰岛素的人工合成,标志着人类在揭开生命奥秘的道路上又迈出了一步。 和“两弹一星”一样,中国人在世界上第一次人工合成胰岛素被负载了很多意义:科研的,民族荣誉感的。尤其让人们津津乐道的是,这是中国科学家与诺贝尔奖几乎是零距离的接触。直到这么久过去了,这也是对中国在科学领域里做出世界上第一流成绩的一个最好证明。,47,1966年底,ATiselius访问了中国,他当时是瑞典皇家科学院诺贝尔奖评审委员会化学组的主席,人们很自然地

9、把他和物色合适的诺贝尔奖候选人联系起来。 后来我得知Tiselius对胰岛素全序列人工合成的评价很高。当被问及对中国第一颗原子弹爆炸的看法时,他的回答却是: “你们能从书上学到原子弹的知识,但学不到人工合成胰岛素。”,48,仿枯叶蝶的迷彩服,三、与昆虫有关的仿生学研究,49,复眼与多屏幕电视墙,50,受蝇眼的启示发明了蝇眼摄像机,除获得理想的图片外,还发现许多常规手段无法得到的细节。,苍蝇的复眼包含4000个可独立成像的单眼,能看清几乎360范围内的物体。 在蝇眼的启示下,人们制成了由1329块小透镜组成的一次可拍1329张高分辨率照片的蝇眼照像机,在军事、医学、航空、航天上被广泛应用。,51

10、,基于苍蝇视觉系统的新型摄像软件能够拍摄普通的图像(下)并显示其中的重要细节,例如房间中的人像(中)并突出细节(上)。,52,可用于超薄相机的人造昆虫眼 。 使人造眼应用于微型全方位监视设备,超薄照相机以及高速运动传感器上 。,53,蜜蜂复眼的每个单眼中相邻地排列着对偏振光方向十分敏感的偏振片,可利用太阳准确定位。 科学家据此原理研制成功了偏振光导航仪,早已广泛用于航海事业中。,54,蝴蝶色彩与伪装 在二战期间,德军包围了列宁格勒,企图用轰炸机摧毁其军事目标和其他防御设施。 苏联昆虫学家施万维奇根据当时人们对伪装缺乏认识的情况,提出利用蝴蝶的色彩在花丛中不易被发现的道理,在军事设施上覆盖蝴蝶花

11、纹般的伪装。因此,尽管德军费尽心机,但列宁格勒的军事基地仍安然无惹,为赢得最后的胜利奠定了坚实的基础。 根据同样的原理,后来人们还生产出了迷彩服,大大减少了战斗中的伤亡。,55,56,拟态与仿生,57,拟态仿生,拟态仿生,坦克的迷彩着装,58,三色迷彩的德国“豹”I坦克在电视成像下的效果,拟态仿生,拟态仿生,坦克的迷彩着装,59,60,蝴蝶身上的鳞片会随阳光的照射方向自动变换角度而调节体温 人造卫星在太空中由于位置的不断变化可引起温度骤然变化,有时温差可高达两、三百度,严重影响许多仪器的正常工作。 科学家们受此启发,将人造卫星的控温系统制成了叶片正反两面辐射、散热能力相差很大的百叶窗样式,在每

12、扇窗的转动位置安装有对温度敏感的金属丝,随温度变化可调节窗的开合,从而保持了人造卫星内部温度的恒定,解决了航天事业中的一大难题。,61,鳞片,62,63,屁步甲炮虫自卫时,可喷射出具有恶臭的高温液体“炮弹”,以迷惑、刺激和惊吓敌害。 解剖后发现甲虫体内有3个小室,分别储有二元酚溶液、双氧水和生物酶。二元酚和双氧水流到第三小室与生物酶混合发生化学反应,瞬间就成为100的毒液,并迅速射出。 二战期间,德国据此机理制造出了一种功率极大且性能安全可靠的新型发动机,安装在飞航式导弹上,使之飞行速度加快,安全稳定,命中率提高,英国伦敦在受其轰炸时损失惨重。,64,步甲的自卫 放屁御敌,65,美国军事专家受

13、甲虫喷射原理的启发研制出了先进的二元化武器。 这种武器将两种或多种能产生毒剂的化学物质分装在两个隔开的容器中,炮弹发射后隔膜破裂,两种毒剂中间体在弹体飞行的810秒内混合并发生反应,在到达目标的瞬间生成致命的毒剂以杀伤敌人。 它们易于生产、储存、运输,安全且不易失效。,66,萤火虫的发光器由发光层、透明层和反射层组成。发光层拥有几千个发光细胞,含有荧光素和荧光酶。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合发出荧光。 萤火虫的发光,实质上是把化学能转变成光能的过程。萤火虫可将化学能直接转变成光能,且转化效率达100%,,67,昆虫学家研究发现,苍蝇的后翅退化成一对平衡棒。当它飞行时,

14、平衡棒以一定的频率进行机械振动,可以调节翅膀的运动方向,是保持苍蝇身体平衡的导航仪。 科学家据此原理研制成一代新型导航仪振动陀螺仪,大大改进了飞机的飞行性能,可使飞机自动停止危险的滚翻飞行,在机体强烈倾斜时还能自动恢复平衡,即使是飞机在最复杂的急转弯时也万无一失。,68,昆虫触角与仿生,一只雌舞毒蛾仅能分泌0.1微克性引诱素,但这已足够诱来100万只雄蛾。 30个性引诱素分子便能促使一只雄美洲蟑螂产生性兴奋。 雌松树锯蝇,其气味能招引约1亿只雄蝇 。,69,苍蝇的嗅觉特别灵敏并能对数十种气味进行快速分析且可立即作出反应。 科学家根据苍蝇嗅觉器官的结构,把各种化学反应转变成电脉冲的方式,制成了十

15、分灵敏的小型气体分析仪,目前已广泛应用于宇宙飞船、潜艇和矿井等场所来检测气体成分,使科研、生产的安全系数更为准确、可靠。,70,蜂巢与仿生 蜂巢由一个个排列整齐的六棱柱形小蜂房组成,每个小蜂房的底部由3个相同的菱形组成,这些结构与近代数学家精确计算出来的菱形钝角10928,锐角7032完全相同,是最节省材料的结构,且容量大、极坚固,令许多专家赞叹不止。 人们仿其构造用各种材料制成蜂巢式夹层结构板,强度大、重量轻、不易传导声和热,是建筑及制造航天飞机、宇宙飞船、人造卫星等的理想材料。,71,夏普32英寸以上的液晶电视都采用夏普自行生产的第六代ASV仿生蜂巢设计,日本原装超黑低反射TFT透射型超級

16、广角液晶面板,使得屏幕的光反射大大降低且黑色更加纯正。,72,蜂巢水果托盘,73,蜂巢式互联网,74,巴塞罗那建筑史上最前卫、最疯狂的建筑艺术家,高迪。,75,76,圣家教堂,77,跳蚤的跳跃本领十分高强,航空专家对此进行了大量研究,英国一飞机制造公司从其垂直起跳的方式受到启发,成功制造出了一种几乎能垂直起落的鹞式飞机,78,79,80,81,82,83,昆虫飞行器,Micromechanical Flying Insect (MFI) Project (微型机械昆虫飞行项目):根据丽蝇的飞行原理来设计的。,Robofly,84,科学时报讯(记者 晓峰) 澳大利亚国立大学的科学家最近根据昆虫的

17、仿生学原理制造了一架新型飞行器,它会像蜜蜂一样观察周围的事物,能够像蜻蜓一样自如地飞行,而且它还能够在环境恶劣的火星表面飞行,以代替行动迟缓的漫游者机器人,从而改变人们探索火星的方式。(2002年),85,月日,美国华盛顿邮报刊出长篇调查报道披露,美国军方和情报机构可能已成功拥有半机械半昆虫的技术,从而在间谍情报、军事侦察和安全保卫等领域产生革命性的影响。(2007年),86,蜻蜓通过翅膀振动(拍打)使自己上升。向前飞行,向后和左右两侧飞行,速度可达72公里/小时。科学家据此研制成功了直升飞机。 又效仿蜻蜓的翅痣在飞机的两翼加上了平衡重锤,解决了因高速飞行而引起振动这个令人棘手的问题。,87,

18、88,89,90,91,尺蛾=尺蠖,92,Bionic Bugs,The Defense Departments attempts to merge insects and electronics are benefiting science more than the military By Ferris Jabr | Posted January 22, 2010;Posted in: Physical Science Tags: animals, biology, biotechnology, insects,93,A giant flower beetle wears an elect

19、ronic backpack that allows researchers to wirelessly control its flight.,94,giant flower beetle,95,A giant flower beetle flies about, veering up and down, left and right. But the insect isnt a pest, and it isnt steering its own path. An implanted receiver, microcontroller, microbattery, and six care

20、fully placed electrodesa payload smaller than a dime and weighing less than a stick of gumallow an engineer to control the bug wirelessly. His team previously modified beetles during the pupal stage, so that their implants are invisible in adulthooda valuable property if they are to be used in cover

21、t missions.,96,A giant flower beetle,Cool! As a young boy I delighted in scaring my sister with a inanimate rubber mouse. In the future young boys will have remote control flying bugs with which to torment their little sisters. How fun!,97,In a large, empty room at the University of California, Berk

22、eley, a giant flower beetle sits on the floor. Like most beetles, it has a segmented body, six legs, and a pair of wings. But theres something a little different about this one: its wearing an electronic backpack thats wired to its wing muscles and brain. An engineer in the room taps a button on his

23、 laptop and instantly the beetles wings begin to vibrate, rousing it into flight. Pressing another key stops all wing movement mid-flight. The beetle drops to the floor a little stunned, perhaps, but unharmed. If it sounds too bizarre biz: to be true, just check out this video on YouTube or view it

24、below.,98,This bionic bug is the latest creation of a government-funded research project whose goal is to invent a new kind of military surveillance by fusing living insects with innovative electronics. The Defense Advanced Research Projects Agency (DARPA) has already invested $12 million since 2006

25、 in the sci-fi venture, hoping someday to deploy insect-machine hybrids as inconspicuous army scouts. A diverse group of scientists from across the nation is working to help make DARPAs vision of remote controlled insect spies a reality. Although any military application is still a long way off, bio

26、logists and engineers are already finding the research useful.,99,In a new study, electrical engineer Hirotaka Sato and his Berkeley colleagues embedded tiny electrodes in beetles brains and muscles, allowing the researchers to remotely start and stop flight, make the insects turn right or left, and

27、 even trigger changes in elevation. The Berkeley research demonstrates “the first wireless control of any insect in free flight,” said John VandenBrooks, an Arizona State University insect biologist and co-author of the study, which was published this past October in the journal Frontiers in Integra

28、tive Neuroscience.,100,According to the study, remotely controlled flying insects could “serve as couriers kri to locations not easily accessible to humans,” places where soldiers cant stroll about unnoticed. As stated on its web site, DARPA hopes to eventually use insect cyborgssabr to carry “senso

29、rs, such as a microphone or a gas sensor, to relay back information gathered from the target destination.” The Berkeley team worked with green June beetles and giant flower beetles, which can grow to the size of a human palm. “Beetles are really ubiquitous and really strong fliers, and they can carr

30、y a large payload,” said VandenBrooks, explaining how these bugs can fly even while toting the hefty electronic backpacks that process and power the electrodes wired to their bodies.,101,After implanting radio-equipped electrodes into the adult beetles brains and wing muscles, the researchers used a

31、 laptop to wirelessly activate the implants, which delivered pulses of electricity. Exciting the beetles brains allowed the team to start or stop flight on command. Exactly why this worked so well remains unclear, since the electrodes affected a sizeable and unspecified brain region. “We must have b

32、een stimulating some part of the motor area,” VandenBrooks suggested. To change the direction of flight, the researchers excited either the left or the right wing muscles.,102,Before the Berkeley study, most advances in insect cyborg research happened at Cornell Universitys Laboratory for Intelligen

33、t Machine Systems, where some researchers focus on moths specifically, hawkmoths(天蛾), which breed quickly and can carry large payloads during flight. Some Cornell researchers have experimented with implanting electrodes during early stages of metamorphosis, so the adult hawkmoths emerge as cyborgs.

34、These implants allowed for some preliminary control of wing movements and established the surgical techniques later used and modified by others, including the Berkeley team.,103,Although DARPA hopes insect-machine hybrids will someday facilitate the military, a fleet of stealthy insect spies wont be

35、 breaking out of the lab any time soon. “Its the whole idea of the fly on the wall technology,” said Tim Reissman, a mechanical engineer at Cornell. “Currently, our fly is this relatively huge insect,” he added, emphasizing the need for both smaller insects and lighter devices before the cyborgs wil

36、l be of any help to the armed forces. VandenBrooks, co-author of the Berkeley study, agreed: “Some people definitely blow it out of proportion. Were not even close to having any applications of that kind.”,104,Perhaps the greatest hurdle to a practical military application of bionic bugs is the issu

37、e of power. Any cyborg electronics will require a power source, which usually means heavy batteries that weigh down even large insects like flower beetles and hawkmoths. Imagine a giant bug the size of your hand, lugging a backpack of batteries and microchips, trying to discreetly carry out its reco

38、nnaissance. Not exactly inconspicuous . But some researchers are determined to resolve the issues of power and size. reconnaissance 美rknsns, -zns . inconspicuous 美nknspkjus,105,With the guidance of lab director Ephrahim Garcia, a mechanical and aerospace engineer, Reissman and others at Cornell have

39、 tried to create electronic devices powered by the moths own movements an attempt to circumvent the dependency on cumbersome batteries. To accomplish this, they use piezoelectric material, which turns motion “into a voltage that can be utilized to power other things,” Garcia explained. Attaching a p

40、iezoelectric device to a moth turns the vibrations of its body during flight into a power source. The ultimate goal is functional battery-free sensors, such as a tiny camera or “a simple GPS monitor the worlds smallest,” Garcia said.,106,Reissman is optimistic about their success. His colleagues are

41、 working to build miniature mechanical systems compatible with the low voltages harvested from a moths movements. According to Reissman, their devices are almost efficient enough for takeoff. Not everyone thinks its feasible to extract sufficient energy from insect movement to power any mechanical i

42、nstruments of practical use. “Im skeptical,” said Reid Harrison, a University of Utah bioengineer who builds electronic backpacks for locusts in order to study how their nervous systems help them escape predators. “These animals only generate so much mechanical force. Even using piezoelectric materi

43、al, its a very difficult challenge.”,107,Despite the obstacles to true energy harvesting, researchers persist. At the University of Washington, Brian Otis is designing a battery-free in-flight monitoring device for hawkmoths. “There is data for insects showing huge differences in temperature between

44、 rest and movement,” he explained. Otis believes the high internal heat of a flying insect is another potential power source.,108,Because DARPA provides the funding, scientists who take on the challenge of creating insect cyborgs are ostensibly working toward the ultimate service of the government a

45、nd army. But so far, the synthesis of insect and machine has benefited science more than the military. Insect cyborgs are not only pushing engineers to build devices like Cornells GPS system that are smaller, lighter and more efficient than anything theyve made before, they could give scientists acc

46、ess to entirely novel information.,109,Its very difficult to measure a living organisms internal processes without somehow restraining it and disturbing its natural behaviors. But the more scientists learn about safely fusing living animals and technology, the better they become at monitoring the ma

47、ny important biological processes that happen inside those animals, without keeping them caged up or tethered in labs. Bionic bugs could soon provide biologists with an unprecedented ability to study insects in their natural environment. Imagine breeding cyborg moths and beetles outfitted with tiny

48、self-sufficient GPS monitors and chemical sensors then releasing them to the skies and forests.,110,“We want to monitor body temperature, metabolic rate, flight speed we want to map where they are going, map their life history. A lot of this is really unknown,” said VandenBrooks, co-author of the Be

49、rkeley study. “Animal tracking devices and how long they last are an important issue,” said Cornells Reissman. “Making better, longer lasting devices would be very advantageous to understanding biological systems.”,111,Focusing on the nervous systems of insects has also proven beneficial to scientists. It might seem trivial to study the brains and behaviors of bugs, but nerves the individual cells of the nervous system are so complicated that re

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1