aA铁路隧道施工培训.ppt

上传人:本田雅阁 文档编号:3097696 上传时间:2019-07-07 格式:PPT 页数:151 大小:3.38MB
返回 下载 相关 举报
aA铁路隧道施工培训.ppt_第1页
第1页 / 共151页
aA铁路隧道施工培训.ppt_第2页
第2页 / 共151页
aA铁路隧道施工培训.ppt_第3页
第3页 / 共151页
aA铁路隧道施工培训.ppt_第4页
第4页 / 共151页
aA铁路隧道施工培训.ppt_第5页
第5页 / 共151页
点击查看更多>>
资源描述

《aA铁路隧道施工培训.ppt》由会员分享,可在线阅读,更多相关《aA铁路隧道施工培训.ppt(151页珍藏版)》请在三一文库上搜索。

1、中国铁道科学研究院 刘艳青 01051849208 13701190930,铁路客运专线 隧道技术标准,降低隧道空气动力效应的结构工程措施 增大隧道有效净空面积其效果显著。但因增加工程数量,从而提高了造价;在洞口增设缓冲结构、将隧道出入口作成喇叭型、增设混凝土明洞或钢结构的棚洞等,并且在其洞壁上开设通气孔洞或窗口,可减弱微压波产生洞口附近的“爆炸”声。,影响隧道横断面尺寸的因素有: 建筑限界; 电气化铁路接触网的标准限界及接触网支承点和接触网链形悬挂的安装范围; 线路数量:是双线单洞还是单线双洞; 线间距; 线路轨道横断面; 需要保留的空间如安全空间,施工作业工作空间等; 空气动力学影响; 与

2、线路设备的结构相适应。,(三)隧道横断面尺寸 隧道有效净空断面积,第五节 隧道断面尺寸设计与关键技术,1、安全空间 隧道内安全空间应在距线路中线3.0m以外,单线隧道设在电缆槽一侧,多线隧道必须设在两侧。 安全空间的高度不应小于2.2 m,宽度不应小于0.8 m。 安全区的地面应不低于轨面规定高度,必须平整,允许有3的横向排水坡。 安全空间的地面与接触网设备的带电部件之间的距离不小于3.95m。,隧道横断面尺寸,2、救援通道 救援通道的规定参考了德国规范,预留空间不控制隧道横断面大小,但与建筑限界一起可以作为控制隧道横断面宽度的依据。 救援通道设在安全空间一侧,救援通道走行面不低于内轨顶面。

3、在装设专业设施处,宽度可减少0.25 m。救援通道净高不小于2.2 m。设备的带电部件之间的距离不小于3.95m。,隧道横断面尺寸,3、技术作业空间 技术作业空间用于安放施工辅助设施,作为预留加强衬砌或安装隔声板等的空间,也可用来满足衬砌未预料的少量的静态长期变形。该空间内允许在有限的长度范围内设置一些设备,如接触导线张力调节器和接触导线以及接头的紧回装置等。技术作业空间沿隧道衬砌内轮廓环向设置,其宽度为0.3m。隧道的施工误差不应占用技术作业空间。,隧道横断面尺寸,隧道内不设置供养护维修人员待避的专用洞室,但应考虑设置存放维修工具和其他业务部门需要的综合洞室。综合洞室沿隧道两侧交错布置,每侧

4、间距应为500m左右。,辅助洞室的设置,我国客运专线隧道一般采用复合式衬砌,个别浅埋或偏压隧道局部采用整体式衬砌。在隧道地下水不发育且岩体完整的、级围岩地段,采用不设置防水板的单层衬砌。隧道衬砌均采用曲墙形式,级以下围岩隧道设置仰拱,仰拱和曲墙圆顺连接,且仰拱厚度较拱墙大;I、级围岩隧道设置钢筋混凝土底板,部分地下水发育地段也采用有仰拱结构;为防止衬砌开裂,级以下围岩衬砌采用钢筋混凝土结构,部分、级围岩衬砌混凝土内掺加合成纤维。初期支护参数考虑支护结构耐久性因素,喷射混凝土的厚度按满足钢架保护层设计,同时喷射混凝土中掺加合成纤维。,支护和衬砌,一般山岭隧道采取“防、排、截、堵结合,因地制宜,综

5、合治理”的原则,隧道衬砌和设备洞室衬砌的防水等级应达到地下工程防水技术规范(GB 501082001)规定的一级防水标准,即隧道内不允许渗水,衬砌结构表面无湿渍。 对地表水和地下水进行妥善处理,洞内外应形成一个完整的防排水系统。 对于岩溶和暗河发育的隧道,尽量维系既有岩溶地下水的通路,采用疏导的工程措施,不随意封堵岩溶管道和暗河出口。 在地下水发育和有可能造成地表水流失、影响地表植被和居民正常生活的地方,增加水文环境影响评价,采用“以堵为主、限量排放”的防排水设计理念。 尽量采用可维护的防排水系统,即采用耐久、可靠的防排水材料,关键部位发生损坏或防排水功能不能满足使用要求时,可以进行维护、检修

6、或更换,满足隧道设计使用年限内的防排水要求。,防排水,隧道洞口设置缓冲结构应考虑的因素为:列车类型及长度、隧道长度及横断面净空面积、隧道内轨道类型、隧道洞口附近地形和洞口附近居民情况。一般情况下,隧道洞口可不设置缓冲结构。隧道出口有建筑物或特殊环境要求时,可考虑设置缓冲结构。进口缓冲结构的设置应根据出口微压波峰值的大小来确定。对于预留缓冲结构条件的洞口,若有路基挡墙,其挡墙位置应在缓冲结构之外。,缓冲结构,根据高速铁路隧道建筑限界和隧道内必须配置的各功能空间的要求,结合前面介绍的隧道空气动力学研究有关成果,我国统一制定了200 km/h、250 km/h、350 km/h不同行车速度条件下的隧

7、道衬砌内轮廓,并编制了相应的双线隧道衬砌通用参考图。,隧道衬砌内轮廓,隧道衬砌内轮廓,隧道衬砌内轮廓,隧 道 衬 砌 内 轮 廓,隧道施工技术,客运专线隧道的特点,客运专线线上的隧道不同于一般的铁路隧道,当高速列车在隧道中运行时要遇到空气动力学问题,主要表现为空气动力效应所产生的新特点及现象。为了降低及缓解空气动力学效应,除了采用密封车辆及减小车辆横断面积外,必须采取有力的结构工程措施,增大隧道有效净空面积及在洞口增设缓冲结构;另外还有其它辅助措施,如在复线上双孔单线隧道设置一系列横通道;以及在隧道内适当位置修建通风竖井、斜井或横洞。 为了降低隧道的空气动力效应,增大隧道有效净空面积是较好的结

8、构工程措施,也是当前世界各国高速铁路发展的总趋势。,客运专线隧道的特点,客运专线线隧道的横断面较大,隧道受力和衬砌混凝土的地质环境复杂,且列车运行速度较高,隧道维修有一定的时间限制,对隧道衬砌的安全性、耐久性和抗渗防水性、抗冻性性能要求提高。对耐久性、等耐久性指标应严格控制。复合衬砌和整体式衬砌比喷锚衬砌安全,且永久性好,故永久性衬砌一般不采用喷锚衬砌。 目前,世界隧道界对喷锚衬砌做为永久性衬砌尚有不同看法,随着对喷锚技术的不断深入研究和技术质量的不断提高,喷锚衬砌的应用也会更加广泛。但在目前情况下,特别在高速铁路隧道中仍不宜采用喷锚衬砌。,客运专线隧道的特点,大断面隧道的受力情况不利,尤以隧

9、道底部较为复杂,隧道拱脚和边墙脚处的应力集中更严重,需要对边墙底与仰拱连接处进行加强,并要求有更高的围岩强度或更好的地基承载力。,客运专线隧道的特点,隧底结构由于在长期列车重载作用及地下水侵蚀的影响下极易产生破坏,从而引起基底沉陷、道床翻浆冒泥等病害,不但增加养护维修工作量,而且严重影响运营安全,尤其是高速铁路对隧道底部的强度较普通铁路要求更高,且高速铁路隧道的断面跨度较大,因此要求高速铁路对底板厚度和仰拱、底板混凝土强度要求提高。,客运专线隧道的特点,除围岩的整体性外,围岩自身强度对客运专线大断面隧道施工方法的确定、隧道的稳定与安全有较大影响。开挖后,隧道周边围岩出现更大范围的塑性化和更大的

10、变形,围岩自稳所要求的围岩强度更高。产生拱作用要求的埋深更深,浅埋隧道的松弛压力更大,浅埋隧道的辅助施工措施要求更强。隧道拱顶更不稳定,拱顶围岩存在拉应力区,拱顶岩块崩塌的可能性更大,客运专线隧道的特点,隧道渗漏水的危害主要会引起洞内金属设备及钢轨锈蚀、隧道衬砌丧失承载力、隧底翻浆冒泥破坏道床或使整体道床下沉开裂、有冻害地区的隧道衬砌背后积水引起衬砌冻胀开裂、衬砌漏水会引起衬砌挂冰而侵人净空。从运营安全上对隧道防排水要求提高。,客运专线隧道的特点,为减低养护维修工作量、保障运营安全对隧道病害的监测、诊断及评定、整治技术需求。,隧道施工,隧道施工关键控制点,1 以确定合理的初期支护参数、控制塌方

11、, 保证隧道施工经济合理、结构安全。 2 以隧道防排水施工达到预期目的、不产生 渗漏水现象保证营运安全。 3 以隧道净空、宽度、平面和纵面指标满足 设计、施工规范要求,保证工程外观及内 在质量。,新奥法概念,新奥法是六十年代奥地利专家腊布希维兹总结前人在隧道施工中累积的经验后所提出来的一套隧道设计、施工的新技术。1948年提出,并于1962年奥地利第八届土力学会议(萨尔茨堡)得到正式命名的隧道施工方法。 新奥法就是施工过程中充分发挥围岩本身具有的自承能力,即洞室开挖后,利用围岩的自稳能力及时进行以喷锚为主的初期支护,使之与围岩密贴,减小围岩松动范围,提高自承能力,使支护与围岩联合受力共同作用。

12、,新奥法概念,奥地利国家 地下空间委员会1980年提出的新奥法“定义”:“新奥地利隧道修建方法(简称新奥法)遵循这样一个 原理,即通过发挥(activation)围岩承载环的主动作 用,使围岩(岩土体)成为承载结构”。 同普氏理论用围岩最终形成的天然平衡拱来描述围岩的自承能力不同,新奥法强调可以主动地通过恰当的围岩支护手段来激发围岩的承载能力,将围岩组织成“承载环“。新奥法概念的提出确实促进了传统的隧道修建技术从设计到施工的全面革新。,新奥法概念,2000版中国土木工程指南第八篇隧道及地下工程中是这样定义和诠释“新奥法”的:“当隧道埋深超过一定限度后,常用暗挖法施工。暗挖法最初采用传统的矿山法

13、。20世纪中叶创造了新奥法,此法尽量利用围岩的自承能力,用柔性支护如锚喷支护控制围岩的变形及应力重分布,使达到新的平衡,目前已用于修建各种用途的隧道。”“新奧法施工的基本思想是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土为主要支护手段,及时对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护的量测、监控来指导隧道和地下工程设计施工。”这些文字应该是对新奥法比较权威的注解。,新奥法遵循原则,(1)应当考虑岩体的力学特性。 (2)应当在适宜的时机构筑适宜的支护结构, 避免在围岩中出现不利的应力应变状态。 (3)为使围岩形成力学上十分稳定的支承环 结构,必须构筑一个闭合的支

14、护结构。 (4)由现场量测监控围岩动态。,新奥法与喷锚支护的关系,喷锚支护只是一种支护手段,并且新奥法中的喷锚支护手段在理论上也有它自己的独立体系。 从理论上讲,隧道力学理论分成两个体系。一是松动压学派,一是粘、弹、塑性理论学派。 松动压学派是以研究作用于隧道支护结构上的荷载-松动压为中心来解决支护结构设计问题的。 粘、弹、塑性理论学派是以研究围岩中应力再分配为中心来解决隧道支护结构设计问题的。新奥法理论属于粘、弹、塑性理论学派的第二分支,因此,没有松动压的概念。,支护过早或过迟都将对围岩和支护结构的共同作用构成不利影响,从而不能有效地形成坚固的承载环。,围岩稳定问题,根据围岩稳定性考虑,当初

15、始位移为U02时,为支护结构施作的最佳时间。,支护2,最佳支护时间 指可以使PDR达到最大的支护时间。此时,支护使PD在优化意义上充分地达到最大,同时又保护围岩强度,使其强度损失在优化意义上达到充分小,亦即其本身自承力PR达到充分大。,围岩稳定问题,最佳支护时间段,新奥法所使用的支护手段,新奥法所使用的支护手段中,除了喷锚支护外,还有钢拱支架、U型可缩性支架、钢筋网、二次模注砼等,在特殊情况下,还要配合使用注浆加固、冻结加固等特殊手段,并且这些支护手段的最终目的是约束围岩变位,使围岩和支护结构共同形成支承结构。另外,新奥法构筑支护手段的时间效应和空间效应对形成支承环结构、保障围岩稳定有很重要的

16、意义。 施工经验表明,采用喷锚支护如果忽视时间效应和空间效应,不仅达不到预期效果,甚至会造成工程事故。,挪威法介绍,NTM:Norwegian Method of Tunneling) 简单地说就是由正确的围岩评价、合理的支护参数和高性能的支护材料三部分组成的一种经济而安全的隧道施工方法,它适用于公路隧道、铁路隧道、水工隧洞及大型地下工程。,挪威法介绍,正确的围岩评价体系主要是采用Q系统。即用巴顿法进行围岩分级。而合理的隧道支护结构参数,是通过隧道施工中的观测和量测记录所求出的Q值来选择的,其中包括各种支护结构体系的数值解析检算。,挪威法介绍,在支护体系上的最大特点是把一次支护作为水久衬砌,只

17、是在运营后,如果有涌水、冰霜等危害的情况下,才修筑二次衬砌。通常一次支护是采用高质量(4050MPa)的湿喷钢纤维混凝土和全长粘结型高拉力耐腐蚀的锚杆,而湿喷钢纤维混凝土的回弹量很小,通常仅为46。,挪威法介绍,Q系统:Q值围岩评价法是70年代初(1974年),由巴顿(N.Barton)等人提出来的一种隧道围岩分级方法。在欧洲各国应用较广。虽然近二十几年隧道的支护技术有了很大的发展,特别是高质量的钢纤维混凝土的开发,并在隧道中得到了广泛的应用,但作为挪威法基本特征之一的Q系统隧道围岩评价法变化却不大,仅仅对岩体应力变量SRF进行了修正(1993年),即SRF考虑了埋深增加时的岩爆及软岩的膨胀性

18、。,挪威法介绍,Q值隧道围岩分级体系: 将围岩分为6级(O.0011000) 岩体的变形系数分为3级(O.0550GPa) 抗剪强度分为2级(0.120MPa)。,挪威法介绍,RQD为岩石质量指标,Jn为节理组数,Jr为节理粗糙度系数,Ja为节理蚀变系数,Jw为裂隙水降低系数,SRF为应力降低系数。,挪威法介绍,第一个商数(RQD/Jn)代表岩体的结构,也是岩块大小和由不同节理组形成的楔形岩块大小的一个量值。 第二个商数(Jr/Ja)代表节理壁或充填料的粗糙度和摩擦特点。,挪威法介绍,参数SRF是衡量以下这些项目的一个量值: (1)在开挖通过剪切带和含粘土挤压岩层情况 下的松散荷载; (2)稳

19、固岩层中的岩石应力; (3)塑性不稳固岩层中的挤压荷载。,挪威法介绍,当以上的6个参数确定以后,就可以根据该式计算出Q值,由Q值就可确定围岩等级。根据围岩的等级就可决定隧道支护的规模和水准,N.Barton等人(1974年)最初提出的Q系统,支护主要是采用加网喷混凝土S(mr)。1978年以后,钢纤维喷混凝土S(Fr)已作为商品投入使用,到1984年已完全代替S(mr)。,挪威法介绍,Q系统的经验支护设计 N.Barton等人根据近l250个永久地下结构物的施工记录整理结果给出了经验设计方法,该方法是通过一张综合考虑各因素的图来选择隧道支护参数。该图的横轴是Q值,围岩类别示于图的上侧,纵轴表示

20、隧道的宽度或高度被表示安全系数的ESR除之的量S。,挪威法介绍,根据横轴Q和纵轴S的数值,将这张图划分成9个不同类型的支护区。 实际应用时,当我们决定了Q值和S值后,即可由Q值和S值在图上确定一点,看这一点落在图中的哪个区域,即可确定隧道支护类型。,挪威法介绍,Q系统的支护设计卡(1993),挪威法介绍,NTM和NATM的区别 新奥法比较适用于软弱围岩。在软弱围岩中修建隧道,节理和超挖不是主要问题,无论人工或机械开挖,均能形成光滑轮廓,围岩能够形成完整的承载环,利用围岩作隧道的主要承载结构,是新奥法的理论核心,实践中必需做到。因此,新奥法强调围岩监测,根据监测结果决定二次支护施作时间和结构形式

21、。,挪威法介绍,NTM和NATM的区别 NTM则更适用于硬岩。在硬岩中修建隧道,无论用钻爆法或掘进机开挖,节理和超挖都占主导地位。在此条件下,锚杆调动围岩强度的动力最强。因此,挪威法以锚杆作隧道主要支护手段。由于很可能超挖,因此,不宜使用钢拱架或网构拱架。由于节理充填物引起围岩不均匀,可能引起围岩失稳,因此要求用喷混凝土或喷钢纤维混凝土对系统锚杆补强。,隧道施工方法,施工方法简介,隧道施工中,开挖方法是影响围岩稳定的重要因素之一。钻爆法仍然是中国目前应用最广、最成熟的隧道修建方法。客运专线隧道开挖常用的方法有全断面法、台阶法、CD工法、CRD工法、双侧壁导坑工法。 在选择开挖方法时,应对隧道断

22、面大小及形状、围岩的工程地质条件、埋置深度、支护条件、施工条件、环境条件、工期要求、工程量、机械配备能力、施工安全、经济性等相关因素进行综合分析,采用恰当的开挖方法,尤其应与支护条件相适应。,施工方法简介,从工程造价和施工速度考虑,施工方法选择顺序应为:全断面法正台阶法台阶设临时仰拱中隔墙法交叉中隔墙法双侧壁导坑法。 从施工安全考虑,顺序正好反过来。在当前的施工实践中,采用最多的方法是台阶法,其次是全断面法。 在大断面隧道中,单侧壁导坑(小隔壁法)和双侧壁导坑(眼镜法)采用较多,由于施工机械的发展和辅助工法的采用,施工方法有向更多地采用全断面法,特别是全断面法与超短台阶法结合的发展趋势。,施工

23、方法简介,隧道施工的基本技术原则 因为围岩是隧道的主要承载单元,所以要在施工中充分保护和爱护围岩。避免过度破坏和损伤遗留围岩的强度,使暴露的围岩尽量保留既有的质量,是最重要最基本的原则。 为了充分发挥围岩的结构作用,应容许围岩有可控制的变形。 变形的控制主要是通过支护阻力(即各种支护结构)的效应达到的。,施工方法简介,隧道施工的基本技术原则 在施工中,必须进行实地量测监控,及时提出可靠的、足够数量的量测信息,以指导施工和设计。 在选择支护手段时,一般应选择能大面积的、牢固的与围岩紧密接触的、能及时施设和应变能力强的支护手段。 要特别注意,隧道施工过程是围岩力学状态不断变化的过程。减少开挖分部,

24、也就有可能减少因分部过多而引起的围岩内的应力变化和围岩松弛。,施工方法简介,隧道施工的基本技术原则 在任何情况下,使隧道断面能在较短时间内闭合是极为重要的。 为保证二次衬砌的质量和整体性,在任何情况下,都应采用先墙后拱的施工顺序。 在隧道施工过程中,必须建立设计施工检验地质预测量测反馈修正设计的一体化的施工管理系统,以不断地提高和完善隧道施工技术。,全断面开挖法 全断面开挖法是指将整个隧道开挖断面一次钻孔、一次爆破成型、一次初期支护到位的隧道开挖方法。 全断面开挖法有较大的作业空间,有利于采用大型配套机械化作业,提高施工速度,且工序少,施工操作比较简单,便于施工组织和管理,较分部开挖法减少了爆

25、破震动次数。但由于开挖面较大,围岩相对稳定性降低,且每个循环工作量较大,每次深孔爆破引起的震动较大,因此要求具有较强的开挖、出渣能力和相应的支护能力。,隧道施工,隧道施工,全断面开挖法 有较大的断面进尺比(即开挖断面面积与掘进进尺之比),可获得较好的爆破效果,且爆破对围岩的震动次数较少,有利于围岩的稳定,但每次爆破震动强度却较大,要求进行严格的控制爆破设计,尤其是对于稳定性较差的围岩。 全断面法一次开挖成形,开挖跨度较大,高度较高,隧道周边围岩出现更大范围的塑性化和更大的变形,隧道拱脚和墙脚处的应力集中更严重,隧道拱顶更不稳定,围岩自稳所要求的围岩自身强度较高。,全断面开挖法 对于硬岩隧道,由

26、于其自身强度一般比较高,所以围岩自身强度并不是影响隧道稳定与安全的决定因素,可通过采取超前锚杆、超前小管棚、超前预注浆等辅助施工措施进行超前预加固,从而提高围岩的整体性。对于软岩隧道,由于其自身强度一般偏低,各种超前预加固措施对于围岩自身强度提高幅度有限,自身强度往往成为影响隧道稳定与安全的控制因素。,隧道施工,全断面开挖法 全断面法主要适用于级硬岩地层和级软岩地层。对于级硬岩地层,在采取超前锚杆、超前小管棚、超前预注浆等辅助施工措施加固后,也可采用全断面法施工,但应根据具体围岩情况适当缩短开挖进尺。浅埋段、偏压段和洞口段不宜采用全断面法开挖。,隧道施工,台阶开挖法 台阶法施工就是将结构断面分

27、成两个或几个部分,具有上下断面两个工作面或多个工作面,分步开挖。其优点是灵活多变、适用性强,有足够的作业空间和较快的施工速度,能较早地使支护闭合,有利于开挖面的稳定性和控制其结构变形及由此引起的地面沉降。缺点是上下部作业有互相干扰,应注意下部作业时对上部稳定性的影响,台阶开挖会增加对围岩的扰动次数等。,隧道施工,台阶开挖法 台阶法适用于、级围岩地层和洞口段、偏压段、浅埋段的级硬岩地层和、级软岩地层,但应视具体情况采取超前大管棚、超前锚杆、超前小管棚、超前预注浆等辅助施工措施进行超前加固,并根据工程实际、地层条件和机械条件,选择合适的台阶方式。 根据地层条件和机械配备情况,台阶法又可分为正台阶法

28、、中隔墙台阶法等。,隧道施工,台阶开挖法 正台阶上下两部分步开挖法 将断面分成上下两个台阶开挖,上台阶长度一般控制在11.5倍洞径,但必须在地层失去自稳能力之前尽快开挖下台阶,支护形成封闭结构。若地层较差,为了稳定工作面,也可辅以小导管超前支护等措施。 一般采用人工和机械混合开挖法,即上半断面采用人工开挖、机械出碴,下半断面采用机械开挖出、机械出碴。有时为解决上半断面出碴对下半断面的影响,可采用皮带运输机将上半断面的碴土送到下半断面的运输车中。,隧道施工,台阶开挖法 正台阶分步开挖留核心土法 该法适用于较差的地层,上台阶取1倍洞径左右环形开挖,留核心土,用系统小导管超前支护、预注浆稳定工作面,

29、用网构钢拱架做初期支护,拱脚、墙脚设置锁脚锚杆。 当隧道断面较高时,可以分多层台阶法开挖,但台阶长度不允许超过1.5倍洞径。,隧道施工,台阶开挖法 中隔墙台阶法开挖 当工作面地层自稳能力较差,上台阶开挖后拱脚支撑在未开挖岩体上的自稳时间较短且开挖断面跨度较大时,可采用中隔墙台阶法(通常配合临时仰拱使用)。通过中隔墙的分载作用,减轻两侧拱脚的压力,降低地表沉陷值,以确保施工安全。 采用中隔墙台阶法开挖时,上台阶开挖长度一般控制在1.5倍洞径内,并辅之以超前小导管注浆加固地层,留核心土环形开挖等措施。由于中隔墙的限制,一般上台阶采用人工开挖,人工出碴至下台阶,下台阶采用机械开挖、机械出碴。,隧道施

30、工,隧道施工,台阶开挖法中隔墙台阶法施工示意,台阶开挖法 台阶开挖时应注意台阶长度要适当。选用长台阶还是短台阶、微台阶,应根据两个条件来确定:其一是初期支护形成闭合断面的时间要求,围岩稳定性愈差,闭合时间要求愈短;其二是上半断面施工时开挖、支护、出渣等机械设备所需的空间大小的要求。还应注意解决好上、下半断面作业的相互干扰问题,尤其是短台阶干扰较大,要注意作业组织,对于长度较短的隧道,可将上半断面贯通后,再进行下半断面施工。下部开挖时,应注意上部的稳定,若围岩稳定性较好,则可以分段顺序开挖,若围岩稳定性较差,则应缩短下部掘进循环进尺,若稳定性更差,则可以左右错开,或先拉中槽后挖边帮。,隧道施工,

31、单侧壁导坑法 单侧壁导坑法是指在隧道断面一侧先开挖一导坑,并始终超前一定距离,再开挖隧道断面剩余部分,变大跨断面为小跨断面的隧道开挖方法。 单侧壁导坑法主要适用于地层较差、断面较大,采用台阶法开挖有困难的,可采用人工配合机械开挖的、级围岩地层。,隧道施工,单侧壁导坑法 采用该法开挖时,单侧壁导坑超前的距离一般在2倍洞径以上。为了稳定工作面,须采取超前大管棚、超前锚杆、超前小管棚、超前预注浆等辅助施工措施进行超前加固。一般采用人工开挖、人工和机械配合开挖、人工和机械配合出碴。断面剩余部分开挖时,可适当采用控制爆破以免破坏已完成导坑的临时支护。,隧道施工,隧道施工,中隔墙法 中隔墙法也称CD工法

32、(Center Diaphragm),是以台阶法为基础,将隧道断面从中间分成左右部分,使上、下台阶左右各分成2或多部分,每一部分开挖并支护后形成独立的闭合单元。,中隔墙法 通过隧道断面中部的临时支撑隔墙,将断面跨度一分为二,减小了开挖断面跨度,使断面受力更合理,从而使隧道开挖更安全、可靠。 中隔墙法主要适用于地层较差的、级围岩地层、不稳定岩体和浅埋段、偏压段、洞口段。一般采用人工开挖、人工和机械配合出碴。可适当采用控制爆破,以免破坏已完成的临时支撑隔墙。,隧道施工,中隔墙法 采用该法进行隧道开挖时,台阶长度一般为11.5倍洞径(此处洞径取分部高度和跨度的大值)。先开挖一侧断面的最后一步与后开挖

33、断面的第一步间应拉开11.5倍洞径的距离。为了稳定工作面,须采取超前大管棚、超前锚杆、超前小管棚、超前预注浆等辅助施工措施进行超前加固。,隧道施工,隧道施工,交叉中隔墙法 交叉中隔墙法也称CRD工法(Cross Diaphragm)。当CD工法仍不能保证围岩稳定和隧道施工安全要求时,可在CD工法的基础上对各分部加设临时仰拱,将原CD工法先开挖中壁一侧改为两侧交叉开挖、步步封闭成环而改进发展的一种工法,交叉中隔墙法 最大特点是将大断面施工化成小段面施工,各个局部封闭成环的时间短,控制早期围岩变形,每个步序受力体系完整。施工大量实例资料的统计结果表明,CRD工法比CD工法减少地表下沉近50 %。但

34、CRD工法施工工序复杂、隔墙拆除困难、成本较高、进度较慢。 CRD工法各分部间应拉开一定的距离,距离以保证掌子面稳定为准,一般为11.5倍洞径(此处洞径取分部高度和跨度的大值),但在能保证掌子面围岩稳定的情况下,可适当缩短距离,以保证操作空间要求。,隧道施工,交叉中隔墙法 CRD工法适用于特别破碎的岩石、碎石土、卵石土、圆砾土、角砾土及黄土组成的级围岩和软塑状黏性土、潮湿的粉细砂组成的级围岩及较差围岩中的洞口段、偏压段、浅埋段等。 为了稳定工作面,采用CRD工法施工时,须采取超前大管棚、超前锚杆、超前小管棚、超前预注浆、掌子面封闭等辅助施工措施进行超前加固。一般采用人工开挖、人工和机械配合出碴

35、。可适当采用控制爆破,以免破坏已完成的临时支撑隔墙和临时仰拱。,隧道施工,隧道施工,双侧壁导坑法 双侧壁导坑法是双侧壁导坑超前中间台阶法的简称,也称眼镜(睛)工法,也是变大跨度为小跨度的施工方法。,双侧壁导坑法 双侧壁导洞法以台阶法为基础,将隧道断面分成双侧壁导洞和上、下台阶4部分,将大跨度分成3个小跨度进行作业,其双侧壁导洞尺寸以满足机械设备和施工条件为主确定。 该工法工序较复杂,导坑的支护拆除困难,钢架连接困难,而且成本较高,进度较慢。,隧道施工,双侧壁导坑法 双侧壁导坑法主要适用于断面很大、地层较差的、级围岩地层、不稳定岩体和浅埋段、偏压段、洞口段。 采用该法开挖时,双侧壁导坑超前的距离

36、相等或不等。为了稳定工作面,经常和超前预注浆等辅助施工措施配合使用。一般采用人工、机械混合开挖,人工、机械混合出碴。,隧道施工,双侧壁导坑法 施工时,应先开挖两侧的侧壁导洞,在导洞内施工完支护后再开挖上台阶,当隧道跨度大而地层条件较差时,上台阶也可采用中隔墙法或环形留核心土法开挖后并及时施工初期支护结构,在拱、墙的保护下,逐层开挖下台阶至基底,并施工仰拱或底板。施工过程中,左右侧壁导洞错开不小于15 m,这是基于在开挖中引起导洞周边围岩应力重新分布不影响已成导洞而确定的。上、下台阶之间的距离,视具体情况,按台阶法确定。,隧道施工,隧道施工双侧壁导坑法,隧道施工双侧壁导坑法,铣挖法 铣挖法是近年

37、来兴起的一种新的施工方法,它通过采用一种叫铣挖机的设备,安装在任何类型的液压挖掘机上,高效替代挖斗、破碎锤等通用配置,应用于隧道掘进及轮廓修正的施工方法,适用于各种地质条件。 在中低硬度的岩石如风化岩、凝灰岩中最大可达到 2540 m3/h(随岩石的密度、破碎度不同而不同)。可以快速准确的修整构造物轮廓,应用在隧道开挖中,不但可以解决令施工单位头疼的欠挖问题,还进而降低施工单位“宁超勿欠”,所引起的成本增大问题。,隧道施工,预切槽法 机械预切槽法是用专用的预切槽机沿隧道横断面周边预先切割或钻一条有限厚度的沟槽,在硬岩中,切槽可作为爆破的临空面,起爆顺序与传统爆破相反,不是由里向外而是由外向里逐

38、层起爆,这种方法可以显著降低钻爆法施工的爆破振动速度。在松散地层中,切槽后立即向槽内喷入混凝土,在开挖面前方形成一个预筑拱,随后才将切槽所界定的掌子面开挖出来,这样就能有效地减少因掌子面开挖而产生的围岩变形与地表沉降,并使开挖工作能在预筑拱保护下安全高效进行。,隧道施工,台阶七步开挖法 洞身开挖采用台阶七步开挖法施工,是指在隧道开挖过程中,分七个开挖面,以前后七个不同的位置相互错开同时开挖,然后分部同时支护,形成支护整体,缩短作业循环时间,逐步向纵深推进的作业方法,形成开挖及施作初期支护,混凝土仰拱紧跟下台阶及时施作构成稳固的初期支护体系。,隧道施工,隧道施工,台阶七步开挖法,隧道施工台阶七步

39、开挖法,监测检测技术,监测检测,对于隧道工程,承载结构变化最直观的就是产生位移,可以利用不同的量测方法和量测仪器得到承载结构位移及内力的变化。通过以往获得大量的承载结构变形及内力量测结果,可以得出承载结构变形及内力变化与承载结构稳定之间的规律。结合已有的工程量测资料,利用类比法可以确定现有承载结构受力变化是否安全。隧道监控量测的实施运用,便是通过种种量测方法得到准确的承载结构变化的相关数据,利用数学方法进行分析,通过类比可以得出一定的结论。量测工作是新奥法构筑隧道非常重要的一环。,监测检测,新奥法量测工作的作用或目的为:掌握围岩动态和支护结构的工作状态,利用量测结果修改设计,指导施工;预见事故

40、和险情,以便及时采取措施,防患于未然;积累资料,为以后的新奥法设计提供类比依据;为确定隧道安全提供可靠的信息;量测数据经分析处理与必要的计算和判断后,进行预测和反馈,以保证施工安全和隧道稳定。,隧道检测技术的主要内容,按隧道修建过程分,其主要内容包括:材料质量检测、超前支护与预加固围岩施工质量检测、开挖质量检测、初期支护施工质量检测、防排水质量检测、施工监控量测、混凝土衬砌质量检测、通风检测、照明检测等。,监测检测,材料检测 隧道工程的常用原材料有:衬砌材料、支护材料、防排水材料。 支护材料包括锚杆、喷射混凝土和钢构件等,防排水材料包括注浆材料、高分子合成卷材、排水管和防水混凝土等。 施工质量

41、检测 主要内容包括:超前支护及预加固、开挖、初期支护、防排水和衬砌混凝土质量检测。,监测检测,支护质量主要指锚杆安装质量、喷射混凝土质量和钢构件质量。对于锚杆,施工质量检测的内容有锚杆的间排距、锚杆的长度、锚杆的方向、注浆式锚杆的密实度、锚杆的抗拔力等。对于喷射混凝土,施工中应主要检测其强度、厚度和平整度。对于钢构件,则要检测构件的规格与节间连接、架间距、构件与围岩的接触情况以及与锚杆的连接。此外,对支护背后的回填密实度也要进行探测。其中,用锚杆拉拔仪、扭力扳手等检测锚杆抗拔力,用锚杆质量检测仪、锚杆密实度检测仪检测锚杆砂浆密实度和长度,用凿孔、隧道激光断面仪、摄影机、混凝土测厚仪、地质雷达、

42、超声波检测仪等检测支护结构厚度,用地质雷达、超声波检测仪检测支护结构缺陷及支护结构背后空洞。,监测检测,衬砌混凝土质量检测包括衬砌的几何尺寸、衬砌混凝土强度、混凝土的完整性、混凝土裂缝、衬砌背后的回填密度和衬砌内部钢架、钢筋分布等的检测。其中外观尺寸容易用直尺量测,混凝土强度及其完整性则需用无损探测技术完成,混凝土裂缝可用塞尺等简单方法检测,衬砌背后的回填密实度和衬砌内部钢架、钢筋分布等可采用地质雷达法和钻孔法检测。,监测检测,按用途可分类,1 工程测试: 为保证施工过程中隧道的稳定和有效地进行施工控制而必须进行的测试项目。如:隧道拱顶下沉、隧道收敛等。 2 检验测试: 为保证和检验隧道工程质

43、量而进行的测试项目。如:锚杆抗拔力及密实度检测、断面测量、支护结构厚度及缺陷检测等。,监测检测,按测试内容分类,按测试内容可分为: 1 围岩状态(包括原岩应力、松弛范围等)测试; 2 荷载(围岩压力及支护层间压力)测试; 3 支护结构状态(包括支护结构内力、位移等)测试。,监测检测,测试项目及手段,测试项目及手段 1 隧道周边位移及断面: 精密水准仪、收敛计、全息摄影机、隧道断面仪。 2 围岩内部位移: 钻孔多点位移计(机械式、电磁式)、地面挠度仪。 3 浅埋隧道地面沉降: 精密水准仪、全断面沉降仪、激光扫平仪。 一般用水平仪量测,量测精度1mm。,监测检测,测试项目及手段,4 原始地应力:

44、水劈裂、应力解除、声发射、钻孔应力(应变、变形)计。 5 岩体破坏状态:岩体声波测试仪。 6 超前地质预报:浅层地震仪。 7 围岩压力及支护层间压力:压力传感器。 8 支护结构内力:混凝土应变仪(钢弦式、电阻式)。 9 锚杆轴力:(应变式、钢筋计)量测锚杆。,监测检测,测试项目及手段,10 结构厚度:混凝土测厚仪、地质雷达、超声波检测仪。 11 结构缺陷及支护结构背后空洞:地质雷达、超声波检测仪。 12 抗拔力:锚杆拉拔仪。 13 锚杆砂浆密实度:锚杆密实度检测仪。,监测检测,隧道变形量测,隧道变形(位移)是隧道围岩和支护结构力学形态变化最直接最明显的反映,也是影响围岩和支护稳定各因素的综合反

45、映,并且变形也是在工程中最容易获取和最直观的信息,是铁路隧道监控量测的必测项目。,监测检测,地表下沉量测控制要点: 浅埋隧道洞顶地表下沉量测应在隧道尚未开挖前就开始进行,借以获得开挖过程中全位移曲线。测点和拱顶下沉量测布置在同一断面上。测点纵向间距与隧道埋深和开挖宽度有关,横向测点一般布置在46倍洞室宽范围,隧道中线附近密些,外侧渐稀,间距为25m。在开挖影响范围以外设置23个水平基点。,监测检测,净空变化量测和拱顶下沉量测,应在同一断面上进行。以水平基线量测为主,必要时设置斜基线。对以下情况要调整量测的断面位置、间隔、频率: a 对膨胀性地质,地层长期不稳定时:缩短间隔、增加频率; b 早开

46、挖或迟缓开挖时:调整断面位置、缩短间隔、增加频率; c 隧道的总长发生变化时:调整断面位置、增长或缩短间隔; d 地质良好,且是同样连续时:增长间隔、减少频率; e 地质变化显著时:调整断面位置、增长或缩短间隔、增加或减少频率; f 能很快取得测定值时:增长间隔、减少频率。 拱顶下沉量测测点,一般布置在拱中和两侧拱腰,每断面布置三点,当受通风管阻碍或有其他障碍时,可适当移动位置。水准基点一般设在拱顶,选择在围岩稳定地段设置。,监测检测,净空变化量测和拱顶下沉量测控制要点,围岩稳定性判别标准问题,不仅同围岩类别以及其他地质因素有关,而且还同施工方法、支护手段等人为因素有关,是比较复杂的。因此,在

47、评价围岩稳定程度时应根据工程的具体情况采用下述三种判别标准综合分析,以确定比较符合实际的标准。,监测检测,围岩稳定性判别标准, 根据实测位移或预计最终位移值判别: 在隧道开挖过程中若发现量测的位移总量超过某一临界值时,或者根据已回归函数预计最终位移将超过某一临界值时,表明围岩难以稳定,需要加强支护。,监测检测,围岩稳定性判别标准, 根据位移变化速率判断 位移变化速率大于某临界值时则认为围岩未稳定,反之则认为围岩已经达到基本稳定。可根据工程特点和围岩条件,制定本工程的位移临界变化速率的标准。 根据位移变形加速度判断 变形速率不断下降,表示围岩趋于稳定,支护是安全的;变形速率长时间保持不变,应及时

48、调整施工程序和加强支护系统的刚度和强度;变形速率逐渐增加,表示围岩已达到危险状态,必须立即停工加固。,监测检测,围岩稳定性判别标准,量测数据的处理,由于现场量测所得的原始数据,不可避免具有一定的离散性,其中包含着测量误差甚至测试错误,必须进行整理和数学处理:将同一量测断面的各种量测数据进行分析对比、相互印证,以确认量测结果的可靠性;探求围岩变形或支护系统的受力随时间变化规律、空间分布规律,判定围岩和支护系统稳定状态。,监测检测,量测数据的处理,量测数据处理的主要内容包括: 绘制位移、应力、应变随时间变化的曲线 时态曲线; 绘制位移速率、应力速率、应变速率 随时间变化的曲线; 绘制位移、应力、应

49、变 随开挖面推进变化的曲线空间曲线; 绘制位移、应力、应变随围岩深度变化的曲线; 绘制接触压力、支护结构应力 在隧道横断面上的分布图。,监测检测,由于量测误差所造成的离散性,按实测数据所绘制的位移等物理量随时间或空间变化的散点图上下波动,很不规则,难以用来分析。因此,需要采用数学处理的方法,将实测数据整理成实验曲线或经验公式。 回归分析是目前量测数据处理的主要方法,通过对量测数据回归分析可以预测最终值和各阶段的变化速率。常用的回归曲线方程有: 对数函数, 指数函数, 双曲函数,监测检测,量测数据的处理,施作柔性的(其实还应该同时强调韧性)初期支护让围岩的变形有所释放的做法,对于初始地应力量值较大、塑性地压显著的深埋隧道是十分有效的。在那种情况下,围岩变形的适度释放,有助于围岩通过应力调整,发挥自承作用,消减作用在衬砌结构上的形变压力。相反地,如果过早地施作刚度较大的二次衬砌,将会降低支护系统的可靠性,甚至造成结构的裂损,这是为国内外一些工程所证实了的。,监测检测,关于变形释放,但是绝不能认为,按新奥法原则修建隧道就必须采用柔性支护,让围岩变形释放。对于软弱围岩中的浅埋隧道,地应力量值本来就不

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1