第五章食品中的脂类物质第一节概述.ppt

上传人:本田雅阁 文档编号:3122034 上传时间:2019-07-13 格式:PPT 页数:101 大小:2.56MB
返回 下载 相关 举报
第五章食品中的脂类物质第一节概述.ppt_第1页
第1页 / 共101页
第五章食品中的脂类物质第一节概述.ppt_第2页
第2页 / 共101页
第五章食品中的脂类物质第一节概述.ppt_第3页
第3页 / 共101页
第五章食品中的脂类物质第一节概述.ppt_第4页
第4页 / 共101页
第五章食品中的脂类物质第一节概述.ppt_第5页
第5页 / 共101页
点击查看更多>>
资源描述

《第五章食品中的脂类物质第一节概述.ppt》由会员分享,可在线阅读,更多相关《第五章食品中的脂类物质第一节概述.ppt(101页珍藏版)》请在三一文库上搜索。

1、第五章 食品中的脂类物质 第一节 概述,5.1.1 脂类化合物的组成及结构 一、分类 *按来源分:乳脂类、植物脂类、动物脂类、微生物脂类等 *按结构中的不饱和程度分:干性油(不饱和程度高,碘值130、半干性油(碘值在100130)及亚不干性油(不饱和程度低碘值100)。,*按其结构和组成分:见下表,二、基本结构,。,按照甘油三酯中R基之间的差别,又可将其分为单纯甘油酯(R1=R2=R3) 和混合甘油酯(R不完全相同);当其中的R1 R3时,甘油中的2-C为手性C,导致甘油三酯具有手性和旋光性。天然油脂多为L构型,三、脂肪酸的常见种类和结构 A、饱和脂肪酸 a.常见种类:酪酸(4C)、己酸(6C

2、)、辛酸(8C)、羊脂酸(10C)、月桂酸(12C)、肉豆蔻酸(14C)、棕榈酸(16C,软脂酸)、硬脂酸(18C)、花生酸(20C)、山嵛酸(22C),b.结构特点:偶数C、直链、不含C=C。 B、不饱和脂肪酸 a.常见种类: 一烯酸:月桂烯酸(C12、顺9)、豆蔻烯酸(C14,顺9)、棕榈油酸(C16,顺9)、油酸(C18,顺9)、反油酸(C18,反9)、芥酸(C22,顺13); 二烯酸:亚油酸(C18,顺9、顺12)、癸二烯酸(C10,反2、顺4)、十二碳二烯酸(顺2、顺4);,三烯酸: 亚麻酸(C18,顺9、顺12、顺15)、 亚麻酸(C18,顺6、顺9、顺12)、 桐酸(C18,顺9

3、、反11、反13)、 桐酸(C18,反9、反11、反13) 多烯酸:花生四烯酸(C20,5,8,11,14)、EPA(C20,5,8,11,14,17)、 DHA(C22,4,7,10,13,16,19),5.1.2 脂肪酸及甘油三酯的命名 一、脂肪酸的命名 a.来源名称:如棕榈酸、油酸、亚麻酸、蓖麻酸等。 b.系统命名法: 如DHA系统名称为:4顺,7顺,10顺,13顺,16顺,19顺-二十二碳六烯酸。,c.数字命名法: (1)双键位次构型-n(C总数): m(双键数) 如:硬脂酸:18:0 棕榈酸:16:0 亚油酸:9c,12c-18:2 DHA:4c,7c,10c,13c,16c,19c

4、-22:6 对于只存在顺式双键及无共轭体系的不饱和脂肪酸也有从末端C开始编号的,表示为:n:mx(末端双键位次)或n:m(n-x),如:亚油酸:18:26或18:2(n-6) -亚麻酸:18:33或18:3(n-3),5.1.3 脂类物质基本的理化性质 一、物理性质:蜡状固态或液态;沸点低,小分子脂类容易挥发而形成特征的风味;不溶于水(有例外),溶于乙醚、石油醚、氯仿、丙酮等有机溶剂; 二、化学性质:酯键容易被水解或酶解而断裂;C=C容易发生构型转化、位置移动、亲电加成、氧化等反应。,第五章 食品中的脂类物质 第二节 油脂类物质的理化性质 主要介绍油脂类物质与食品相关的理化性质,5.2.1 物

5、理性质 一、气味和色泽,二、熔点和沸点 天然油脂无固定的熔点和沸点,而只有一定的熔点范围和沸点范围。这是因为天然油脂是混合物且存在有同质多晶现象。 油脂组成中脂肪酸的碳链越长、饱和程度越高,熔点越高;反式脂肪酸、共轭脂肪酸含量高的油脂,其熔点较高;,油脂沸点一般在180200之间,沸点随脂肪酸碳链增长而增高。碳链长度相同,饱和度不同的脂肪酸,其沸点变化不大。,三、烟点、闪点及着火点 烟点:不通风条件下油脂发烟时的温度; 闪点:油脂中挥发性物质能被点燃而不能维持燃烧的温度; 着火点:油脂中挥发性物质能被点燃并维持燃烧时间不少于5s时的温度。 油脂的纯度越高,其烟点、闪点及着火点均提高。,四、结晶

6、特性 同质多晶现象:化学组成相同的物质可以形成不同形态晶体,但融化后生成相同液相的现象叫同质多晶现象,例如由单质碳形成石墨和金刚石两种晶体。 油脂在固态的情况下也有同质多晶现象。 *可能形成的晶体形态:主要有 型、 型、和型三种。,*几种晶体的基本特点: 型:有点阵结构但脂肪酸侧链呈现不规则排列 型:有点阵结构且脂肪酸侧链全部朝着一个方向倾斜。按照序列内分子间交错排列的紧密程度,还有“二倍碳链长(-2)”和“三倍碳链长(-3)”之分。,含有不同脂肪酸的三酰基甘油的型的熔点比型高。, 混合型的三酰基甘油的同质多晶体结构更为复杂。,五、脂的熔融特 (一)熔化 简单甘油三酯(即所含三个脂肪酸种类相同

7、)是一类纯的物质,其熔融行为符合纯物质的熔融特性,即从固体变为液体时,热焓对物料温度的曲线为S形,即固体开始熔融前加热,固体温度上升,但当熔融开始时,加热所提供的热量,用来克服相变所需的能量,状态发生变化但温度不发生变化;全部变为液体后继续加热液体温度继续上升。在这个过程中也会出现不同晶形相互转化的问题。,天然油脂由于是混合物,其熔融行为和简单酯的行为有些差别。首先相变过程变得不明显,当出现固液混合体系时,温度仍有所上升;其次,天然脂熔融时体积会发生变化。,(二)油脂的塑性 油脂的塑性是与油脂的加工和使用特性紧密相关的物理属性。其定义为在一定外力的作用下,表观固体脂肪所具有的抗变形的能力。 决

8、定油脂塑性的因素:(1)固体脂肪指数(SFI):即在一定温度下脂肪中固体和液体所占份数的比值,可以通过脂肪的熔化曲线来求出。SFI太大或太小,油脂的塑性都比较差,只有固液比适当时,油脂才会有比较好的塑性。,(2)脂肪的晶形:晶形的油脂其可塑性比晶形要好,这是因为晶形中脂分子排列比较松散,存在大量的气泡,而晶形分子排列致密,不允许有气泡存在; (3)熔化温度范围:熔化温度范围越宽的脂肪其塑性越好。 如果SFI太大,固脂含量很高,脂肪太硬且变脆。 如果SFI太小,固脂含量很低,脂肪过软且非常容易熔化 只有当固液比适当时,油脂才会有比较理想的塑性。一般来说,食用脂肪固体含量在10%-30%。,塑性脂

9、肪举例,人造奶油是由含有高含量反式油酸与反式亚油酸的油进行选择性氢化直接混合制成的。 2006年9月,纽约市卫生局公布了一项新规定,所有餐馆在07年7月前去除食用油、人造黄油、起酥油中的反式脂肪成分。08年7月前去除所有食品中的反式脂肪成分,六、油脂的液晶态 油脂除了存在固态、液态外,还有一种介于固态和液态之间的相态,称为液晶态。油脂液晶态的存在是由油脂的结构决定的。 此时,分子排列处于有序和无序之间的一种状态,即相互作用力弱的烃链区熔化,而相互作用力大的极性基团区未熔化时的状态。脂类在水中也能形成类似于表面活性物质存在方式的液晶结构。,由于乳化剂是典型的两亲分子(分子含有极性和非极性部分),

10、 也可形成液晶态。,七、油脂的乳化和乳化剂 油脂和水在一定条件下可以形成一种均匀分散的介稳的状态乳浊液,乳浊液形成的基本条件是一种能以直径为0.150m的小滴在另一种中分散,这种分散一般成为内相或分散相,分散小滴外边包围的液体成为连续相。,乳浊液是一种介稳的状态,在一定的条件下会出现分层、絮凝甚至聚结等现象。其原因为:两相的密度不同,如受重力的影响,会导致分层或沉淀; 改变分散相液滴表面的电荷性质或量会改变液滴之间的斥力,导致因斥力不足而絮凝; 两相间界面膜破裂导致分散相液滴相互聚合而分层。,乳浊液稳定性同液滴间引力与斥力的平衡有关, 如果液滴间斥力大于引力,则乳浊液有较好的稳定性。,5.2.

11、2 油脂在食品加工贮藏中的氧化反应,5.2.2.1油脂的自动氧化 油脂的自动氧化指活化的含烯底物(油脂分子中的不饱和脂肪酸)与空气中氧(基态氧)之间所发生的自由基类型的反应。此类反应无需加热,也无需加特殊的催化剂.,在自动氧化的情况下,由引发剂与不饱和脂肪酸反应得到的烷基自由基是与基态氧进行氧化反应的,基态氧就是空气中存在的常态氧,其分子中电子的排布方式为:,氧分子中电子的这种排布方式成为三线态,与之相对应的是单线态:,由于三线态中电子的排布符合洪特规则,因此能量较低,比较稳定。,二、常见脂的氢过氧化合物的形成 a.油酸氢过氧化合物,b.亚油酸的氢过氧化合物,5.2.2.2 光敏氧化 光敏氧化

12、即是在光的作用下(不需要引发剂)不饱和脂肪酸与氧(单线态)之间发生的反应。光所起的直接作用是提供能量使三线态的氧变为活性较高的单线态氧。但在此过程中需要更容易接受光能的物质首先接受光能,然后将能量转移给氧。将此类物质成为光敏剂。食品中具有大的共轭体系的物质,如叶绿素、血红蛋白等可以起光敏剂的作用。,此反应的基本特点是:双键邻位C上的氢参与了反应,但形成的氢过氧键不在双键邻位C上,而是直接在双键C上;反应中双键移位,原先邻位饱和C变为了双键不饱和碳;单线态氧首先和邻位C上的氢结合,然后未与氢结合的另一个氧原子进攻并打开双键,同时双键移位并H从邻位C上断下,形成产物;如果双键两边均有邻位C,则有不

13、同的反应方式,这正是理解教材所举例子的关键。 对于同样的反应底物,光敏反应的速度大于自动氧化(约1500倍)。,5.2.2.3 酶促氧化 一、脂肪氧合酶催化的反应 脂肪氧合酶专一性的催化具有1,4-顺,顺-二烯结构的多不饱和脂肪酸发生氧化反应。例如亚油酸所发生的反应:,5.2.2.4 氢过氧化合物的反应 氢过氧化合物既可以通过分解反应,也可以通过聚合反应而进一步发生变化。,通过过氧键的均裂,得到烷氧自由基,进一步反应可以得到小分子的醛、酮、羧酸等化合物。,氢过氧化合物的聚合可以有不同的形式和过程。可以是氢过氧化合物的聚合,也可以是得到氢过氧化合物过程中的不同自由基的聚合;还可以是氢过氧化合物分

14、解产物的聚合。,5.2.2.5影响油脂氧化的因素 一、脂肪酸的组成及结构,二、氧 低氧浓度(分压)时,油脂氧化与氧浓度(分压)近似正比; 单线态氧反应速度比三线态快(1500倍)。,三、温度 温度增加,油脂的氧化速度提高;这是因为温度提高有利于自由基的生成和反应。 油脂加工时的温度条件也能影响其以后的加工和贮藏特性。,四、水分 水分特别是水分活度对于油脂氧化速度的影响,在第三章已经介绍。总的趋势是当水分活度在0.33时,油脂的氧化反应速度最慢。随着水分活度的降低和升高,油脂氧化的速度均有所增加。,五、表面积 油脂表面积越大,氧化反应速度越快;这也是油性食品贮藏期远比纯油脂短的原因。,六、助氧化

15、剂 一些二价或多价,如Cu 2+、Zn2+、Fe3+、Fe2+、Al3+、Pb2+等的金属离子常可促进油脂氧化反应的进行,称这些金属离子为助氧化剂。金属离子在油脂氧化中通过下面三种方式发挥促进的作用:,(二)直接使有机物氧化:,(三)活化氧分子:,。,(一)促进氢过氧化物分解,产生新的自由基:,七、光和射线:光线或射线是能量,可以促使油脂产生自由基或促使氢过氧化物分解。 八、抗氧化剂:即能防止或抑制油脂氧化反应的物质。这类物质可以通过不同方式发挥作用,有天然和人工合成两大类.,5.2.3油脂在加工贮藏中的其它化学变化 一、油脂的水解,油脂水解主要的特点是游离脂肪酸含量增加。这会导致油脂的氧化速

16、度提高,加速变质;也能降低油脂的发烟点;使油脂的风味变差。,二、高温下的反应 油脂在加热的条件下会发生分解、聚合、缩合、水解、氧化反应等。这些反应均是机理比较复杂的反应。 (一)热分解 脂类在加热情况下可以发生非氧化热分解和氧化热分解两种形式的反应。,饱和脂肪的非氧化热分解可以表示为:,饱和脂肪酸的氧化热(150以上)分解可以表示为:,不饱和脂肪也能发生两种形式的热分解反应:在无氧条件下,发生复杂分解得到小分子物质,也有二聚体形成;在有氧条件下的热分解反应和自动氧化的主要过程相同。 二、热聚合反应 油脂在加热条件下不仅可以发生分解反应,也能发生聚合反应。热聚合也有氧化热聚合和非氧化热聚合两类。

17、,非氧化热聚合主要发生在脂分子内或分子间的两个不饱和脂肪酸之间,反应形式主要是共轭烯键与单烯键之间的Diels-Alder反应。如: 分子内:,氧化热聚合反应主要发生在不饱和键的-C上,通过这种C之间的自由基结合而形成二聚体。 油脂在加热条件下还能发生缩合反应,在辐射条件下还能发生降解反应等。,5.2.4油脂质量评价中的一些重要参数 5.2.4.1过氧化值 过氧化值(peroxidation value, POV):指1kg油脂中所含氢过氧化合物的毫克当量数。这个值在油脂的氧化初期随时间的延长而增加,而在后期则由于氢过氧化物分解速度的加快,其实际存在量会降低。因此用过氧化值评价油脂氧化的趋势多

18、用于氧化的初期。 直接测定法:碘量法,间接测量法硫代巴比妥酸法 脂质氧化中典型的分解产物是可以得到一些醛类,如丙二醛(MDA)这些醛可与硫代巴比妥酸发生下列反应而显色。,5.2.4.2 碘值 碘值:指100g油脂吸收碘的克数。反应原理为:,利用碘量法测定消耗的碘量:,5.2.4.3 酸价 酸价(acid value, AV):中和1g油脂中游离脂肪酸所需的KOH的毫克数。 酸价与油脂中游离脂肪酸的量成正比。反映了油脂品质的优劣。一般新鲜油脂的酸价较低(小于5)。,5.2.4.4 皂化价 皂化价:1g油脂完全皂化所需的KOH的毫克数。 油脂的皂化价与油脂的平均分子量成反比,即皂化价越大,油脂的平均分子量越小。 5.2.4.5 二烯值 二烯值也可称为共轭二烯值,即具有共轭二烯结构的不饱和脂肪酸与丁烯二酸酐反应时需要丁烯二酸酐的量换算成所需碘的量。反映了不饱和脂肪酸中是否存在有共轭二烯结构及此结构的数量,第三节 油脂加工化学,5.3.1 油脂的精炼,5.3.2油脂的改性 油脂的改性是油脂工业的重要项目,主要包括氢化、酯交换等。 油脂的氢化是通过催化加氢的过程使油脂分子中的不饱和脂肪酸变为饱和脂肪酸,从而提高油脂熔点的方法。,酯交换,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1