概率0000.ppt

上传人:本田雅阁 文档编号:3134649 上传时间:2019-07-15 格式:PPT 页数:39 大小:619.53KB
返回 下载 相关 举报
概率0000.ppt_第1页
第1页 / 共39页
概率0000.ppt_第2页
第2页 / 共39页
概率0000.ppt_第3页
第3页 / 共39页
概率0000.ppt_第4页
第4页 / 共39页
概率0000.ppt_第5页
第5页 / 共39页
点击查看更多>>
资源描述

《概率0000.ppt》由会员分享,可在线阅读,更多相关《概率0000.ppt(39页珍藏版)》请在三一文库上搜索。

1、第一节 数学期望,离散型随机变量的数学期望 连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习 小结 布置作业,在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了.,然而,在实际问题中,概率分布一般是较难确定的. 而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了.,因此,在对随机变量的研究中,确定某些数字特征是重要的 .,在这些数字特征中,最常用的是,数学期望、方差、协方差和相关系数,一、离散型随机变量的数学期望,1、概念的引入:,我们来看一个引例.,例1 某车间对工人的生

2、产情况进行考察. 车工小张每天生产的废品数X是一个随机变量. 如何定义X的平均值呢?,我们先观察小张100天的生产情况,若统计100天,32天没有出废品; 30天每天出一件废品; 17天每天出两件废品; 21天每天出三件废品;,可以得到这100天中 每天的平均废品数为,这个数能否作为 X的平均值呢?,(假定小张每天至多出现三件废品 ),可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27.,n0天没有出废品; n1天每天出一件废品; n2天每天出两件废品; n3天每天出三件废品.,可以得到

3、n天中每天的平均废品数为,(假定小张每天至多出三件废品),一般来说, 若统计n天 ,这是 以频率为权的加权平均,当N很大时,频率接近于概率,所以我们在求废品数X 的平均值时,用概率代替 频率,得平均值为,这是 以概率为权的加权平均,这样得到一个确定的数. 我们就用这个数作为随机变量X 的平均值 .,定义1 设X是离散型随机变量,它的分布率是: PX=xk=pk , k=1,2,请注意 :离散型随机变量的数学期望是一个绝对收敛的级数的和.数学期望简称期望,又称为均值。,若级数,绝对收敛,,则称级数,即,的和为随机变量X的数学期望,记为 ,例1,例2,一旅客8:20到车站,求他候车时间的数学期望.

4、,例3 按规定,某车站每天8:009:00,9:0010:00 都恰有一辆客车到站,但到站时刻是随机的,且两者 到站的时间相互独立。其规律为:,二、连续型随机变量的数学期望,设X是连续型随机变量,其密度函数为f (x),在数轴上取很密的分点x0 x1x2 ,则X落在小区间xi, xi+1)的概率是,小区间xi, xi+1),阴影面积近似为,由于xi与xi+1很接近, 所以区间xi, xi+1)中的值可以用xi来近似代替.,这正是,的渐近和式.,该离散型r.v 的数学期望是,由此启发我们引进如下定义.,定义2 设X是连续型随机变量,其密度函数为 f (x),如果积分,绝对收敛,则称此积分值为X的

5、数学期望, 即,请注意 : 连续型随机变量的数学期望是一个绝对收敛的积分.,例4,例5,若将这两个电子装置串联连接组成整机,求整机,寿命(以小时计) N 的数学期望.,的分布函数为,三、随机变量函数的数学期望,1. 问题的提出:,设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?,一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把Eg(X)计算出来.,那么是否可以不先求g(X)的分布而只根据X的分布求得Eg(X)呢?,下面的定理指出

6、,答案是肯定的.,使用这种方法必须先求出随机变量函数g(X)的分布,一般是比较复杂的 .,(1) 当X为离散型时,它的分布率为P(X= xk)=pk ;,(2) 当X为连续型时,它的密度函数为f(x).若,定理 设Y是随机变量X的函数:Y=g (X) (g是连续函数),该公式的重要性在于: 当我们求Eg(X)时, 不必知道g(X)的分布,而只需知道X的分布就可以了. 这给求随机变量函数的期望带来很大方便.,上述定理还可以推广到两个或两个以上随 机变量的函数的情况。,例6,例7,例7,四、数学期望的性质,1. 设C是常数,则E(C)=C;,4. 设X、Y 相互独立,则 E(XY)=E(X)E(Y

7、);,2. 若k是常数,则E(kX)=kE(X);,3. E(X+Y) = E(X)+E(Y);,(诸Xi相互独立时),请注意: 由E(XY)=E(X)E(Y) 不一定能推出X,Y 独立,五、数学期望性质的应用,例8 求二项分布的数学期望,若 XB(n,p),,则X表示n重贝努里试验中的“成功” 次数.,现在我们来求X的数学期望 .,可见,服从参数为n和p的二项分布的随机变量X的数学期望是 n p.,XB(n,p),若设,则 X= X1+X2+Xn,= np,i=1,2,n,因为 P(Xi =1)= p,P(Xi =0)= 1-p,所以 E(X)=,则X表示n重贝努里试验中的“成功” 次数.,

8、例9 把数字1,2,n任意地排成一列,如果数字k恰好出现在第k个位置上,则称为一个巧合,求巧合个数的数学期望.,由于 E(Xk)=P(Xk =1),解: 设巧合个数为X,k=1,2, ,n,则,故,引入,例10 一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车.以X表示停车的次数,求E(X).(设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立),按题意,本题是将X分解成数个随机变量之和,然后利用随,机变量和的数学期望等于随机变量数学期望的和来求,数学期望的,此方法具有一定的意义.,六、课堂练习,1 解 设试开次数为X,于是,E(X),2 解,Y是随机变量X的函数,P(X=k)=1/n, k=1, 2, , n,七、小结,这一讲,我们介绍了随机变量的数学期望,它反映了随机变量取值的平均水平,是随机变量的一个重要的数字特征.,接下来的一讲中,我们将向大家介绍随机变量另一个重要的数字特征:,方差,八、 布置作业,概率与统计P106 2, 4, 7, 8,概率论与数理统计P89 1, 2, 6, 7,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1